Combining machine learning and data assimilation

to improve hydrodynamic forecasting in a tidal estuary

Clemens Cremer, Jesper Sandvig Mariegaard, Henrik Andersson, Henrik Madsen DHI A/S, Denmark

30 May 2022

Background and Motivation

Area of interest and challenge

Background and motivation: Port of Hamburg

Background and motivation: Operational model

- numerical model of Elbe Estuary
 - Two dimensional
 - DHI Software 2D MIKE FM
- Online (real-time)
 - In operation for ~10 years with improvements in between
 - Hindcast 1.5 h
 - Forecast 8.5 h
 - Model run / Updated hourly

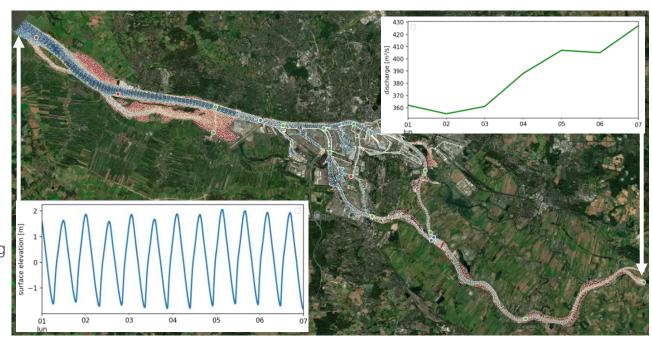
Background and motivation: Characteristics of current model

Boundary conditions

- Water level (downstream)
 - Water level external prediction
- Discharge (upstream)
 - naïve forecasting (last value)

Further model parametrization

- Bed resistance
- Consideration dynamic wetting and drying (tidal flats)



Problems:

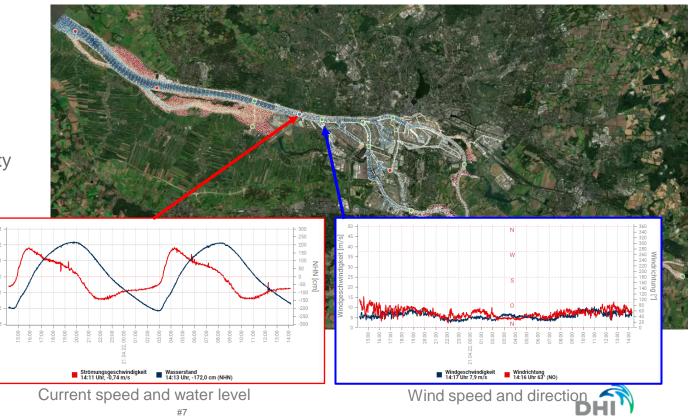
- Analysis shows strong uncertainty in provided water level boundary condition for forecast
- Further uncertainty in model parametrization (no meteorological forcings, bathymetry, roughness, geometry)

Assessment of model skill

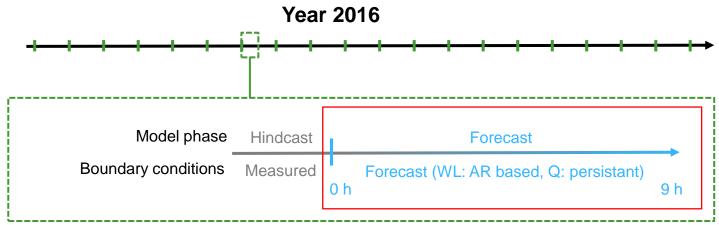
Model skill assessment: Observations

- Water level gauges
- Currents
- Discharge
- Wind
- Suspended Sediment
 Concentration / Turbidity

4 June, 2022



Model skill assessment: Forecast sampling



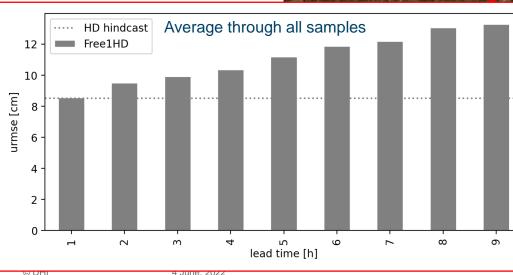
- Extracting 100 samples for individual forecast
- Throughout one year (2016)
- Forecasts initialized with water levels and current speeds in domain (from Hindcast)
- Boundary conditions

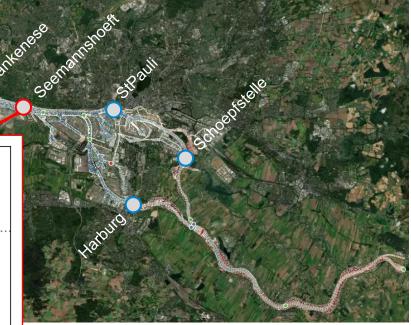
© DHI

- Waterlevel forecast: artificial forecast, mimicking externally provided (AR process)
- Discharge forecast: with persistence (last observed value)

Model skill assessment: **Observation gauges**

- Evaluating unbiased rmse
- All samples average
- urmse increasing with lead time





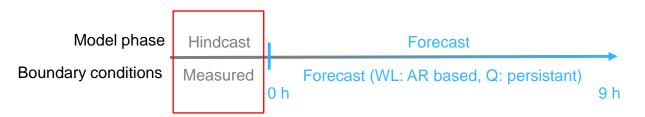
Improving the operational model

Data assimilation

Solution? The promise of data assimilation

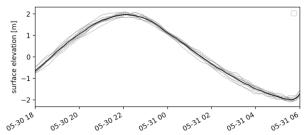
- Data assimilation
 - · Continuous update with observations / model skill assessment
 - Spatial and multivariate propagation / interpolation of point information
 - Physically consistent representation

 \rightarrow Without future observations: Improve Hindcast and initial conditions

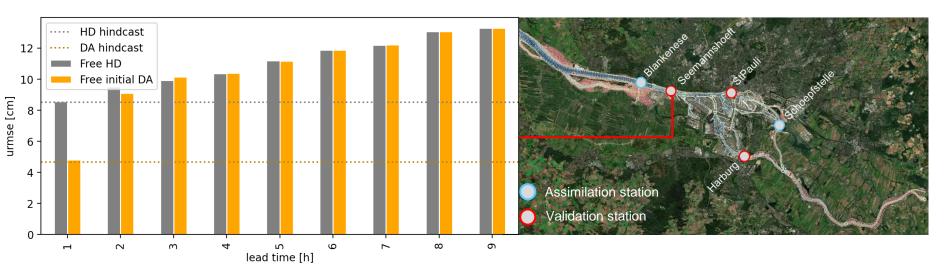


Solution? Assimilation setup

- Application of EnKF (serial, "Potter-scheme")
 - Temporal smoothing
 - No localization
- Ensemble created
 - with 10 members
 - by perturbation of the water level boundary conditon
 - perturbation propagation via AR(1) process with a halflife of 3 hours
 - Sampled from gaussian with std dev of 0.2 m
- Two stations utilized for assimilation



Solution? First results with data assimilation



- DA with observations in hindcast
- Initial conditions with DA improve next 2 hours of forecast
- Reversion to non-DA forecast results afterwards
- \rightarrow Dynamical system strongly driven by boundary conditions
- ightarrow To improve long term forecast better future "observations" for assimilation required

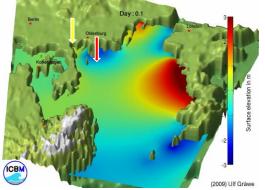
© DHI

Providing future "observations" for assimilation

Via a machine learning approach

Solution Part 2? The promise of ML predictions

- · Fast timeseries forecasting, suited for prediction
- Easy to consider features (e.g. wind, more distant gauges outside of model domain)

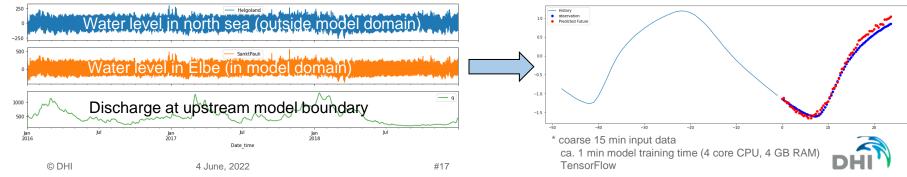


- Effects not considered in numerical model might be learned and considered by data-driven model (e.g. seasonal vegetation)
- Best case: easy setup and little calibration for decent results
 - Tweaking of parameters and hyperparameters potentially easier than obtaining and processing input data required for deterministic model

Solution Part 2? Forecasting water levels via LSTM

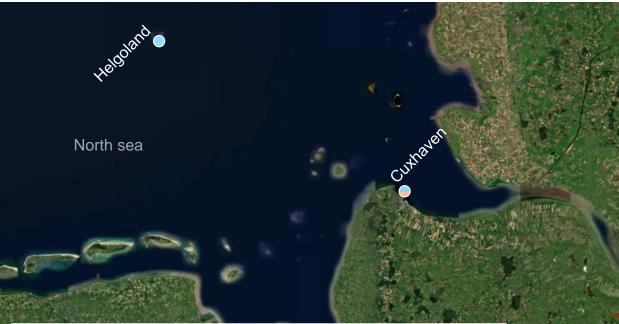
- · Predict water levels at assimilation stations
- Water levels are a function of...
 - Wind speed and direction in north sea
 - Upstream Discharge
 - Water levels of neighboring stations
- Long Short Term Memory model found suitable

LSTM water level forecast of next 6 hours



Exemplary input features

Solution Part 2? Setup and features of LSTM



Long Short Term Memory settings

- Input: 12 lagged hours of features
- Two LSTM layers (256-128 units)
- Output layer (Dense) \rightarrow 12 lead hours

Long Short Term Memory features

- Water levels in North Sea
- Wind speed and direction
- Discharge (upstream)
- Time (hour of day, day of year)
- Years 2017-2019 used for training and validation
- Split 80%-20%

Hybrid model setups

Combining hydronumeric model with machine learning and data assimilation

Recap: Combining ML prediction with data assimilation

Data assimilation

- Continuous update with observations
- Spatial and multivariate propagation
- Physically consistent representation

ML prediction

- Fast timeseries forecasting ("observations")
 - Taking into account features outside of model domain

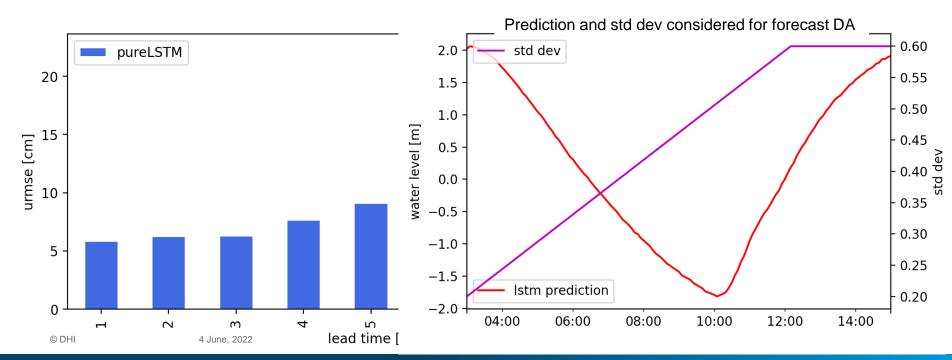
- Incorporation of ML predicted point "observations" in data assimilation
- · Combining forecasts with different uncertainties into outcome with smaller overall uncertainty

Combining ML prediction with data assimilation

 DA model utilizing ML Blankenessenamano etc predicted "observations" at Blankenese and epistell Schoepfstelle for assimilation - observation (lagged) LSTM prediction - observation (lead) 700 600 500 400 -150 -100 -50 150 --- observation (lagged) LSTM prediction --- observation (lead) 500 -20400 -40 300 © DHI 4 June, 2022 150 -150 -100 -50 50 100

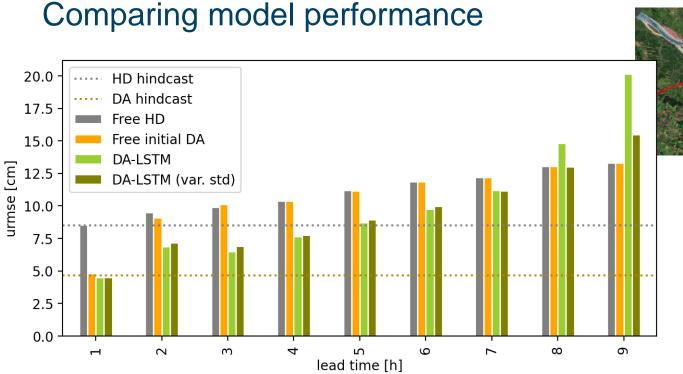
Combining ML prediction with data assimilation

- LSTM forecasts in general less reliable with increasing lead timesteps
- Considering decreasing confidence with time in LSTM predicted values DA



Results

Evaluating for different lead times



- Constant measurement error (std dev of 0.2) best performance up to ~7 hours lead time
- · Considering stronger uncertainty in LSTM for larger lead times beneficial

Summary & Outlook

Summary & Outlook

- Combination of data-driven forecast and numerical model with data assimilation investigated
- · Overall forecast quality improved
- it is worth to combine timeseries forecasting and data assimilation for a physically consistent, multivariate representation
- Future work will focus on
 - Evaluation of other variables (current speeds, discharge, sediments)
 - Improving LSTM timeseries predictions
 - · Improve prediction of rare / extreme events

Thank you for your attention!

