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Introduction : Seismic inversion
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Seismic waveform inversion

e Seismic data y are wave reflections from subsurface model.
e Elastic parameters x = [v,, v, p].

* |Information on elastic attributes are in waveform amplitude
and phase.

Marine seismic survey?!

1 CC-BY-SA-NC, https://subsurfuiki.org
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https://subsurfwiki.org

Seismic waveform data

e Data corrupted by noise — observation model
y = h(x) + e,e ~ N (0, R).
¢ Nonlinear forward model h(x): seismic wave propagation.
® j(x) use much computation resources / time.
e Data dimension ~ 1000000
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Reflectivity method

e Layered subsurface assumption (1.5D)

e Reflectivity method A(x), a solution to elastic wave
equation.
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Seismic common midpoint gather
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Probabilistic inversion

Bayes' rule
p(xly) o< p(y|x) p(x) .
Observations model likelihood

plyl) o< exp (~3[ly* = hx)[7) -
Gaussian prior/forecast x ~ N (xf, Py)
2
plxly) o< exp (= ([[y* = ro) + [x =<3, )) -

Nonlinear forward model, no closed form available.

No fluid dynamical model here. No time-lapse seismic data.
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[terative ensemble Kalman smoother
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Ensemble representation

Ensemble
Ef = [xfl] xfz] xfn]} member xlfi] ~ p(x).

Ensemble mean and covariance
1 n
x = - > x{;, Pr = X, X{ where X, = (B —£17) /(n—1)".
=1

Analysis state is linear combination in ensemble subspace
x* e (X +X;w|weR"} .

Square root version of EnKF. Update mean and anomaly
matrix separately

x* =% +X;w* and X, = X,;T.
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Iterative Ensemble Kalman Smoother

e Change of variable cost function
o _ 2 2
Jw) = 3|ly* = hE + Xew)|[ + 5wl

* w* = argmin,, J(w), transform matrix T = H™'/?| .

* Gauss-Newton iterationw,,, = w, — H;'V /..
Sensitivities VJ; and H; via iterate ensemble evaluation,
centered at mean x; = x(w;) .

e SVD of R7/*Y = UXV", where diag(X); = \; and

Ay =R (y> —§") =

n

T T ~
—v,w;  Af(u; Ay)
ij+]_ = ;VZ' (1 I )\?J + 1 i )\? = AWIJ' + Awy,j .
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Initial step analysis

n T . TA~
Awl :sz( VvV, Wo + )\Z(uz Y)) :AWI‘I‘Awy

— L+ A7 L+ A

e Coefficients of vector components Aw, and Aw, are

weighting of prior and likelihood projection coefficients.

¢ This weighting depends on the data size.
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Data size and eigenvalues

3

Offset. (k]

Increasing data dimension p

(1+22)7tand (14 A2)~1/2
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Ensemble update look

Update mean and anomaly matrix

x* =% +X;w* and X, = X,;T.

1 100 200 300
singular value index
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Sequential estimation
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Sequential estimation

Batch/sequential processing:
K

p(xly) o p(x) | [ p(yslx)

k=1

Sequential estimation:

p(x) = p(x|y1) = p(x|y1,¥2) = ... = p(X|y1,...,¥k)

e Breaks down full depth dependency into intervals —
inversion works top-down.
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Sequential estimation

Reduces nonlinearity — facilitates ensemble-linearization.

Reduces amount of data in each conditioning step —
prevents overfitting.

Reduces the tendency to go into wrong posterior modes.

Must balance the batch approach with time consuming
reflectivity method runs.
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Batch size selection

Flowchart

AT=A Tmax T57 Tmax
ar Yb = 7% Zl7¥nn31&7;mx

] AT = max([LAT], ATo) H Tp = min(Tg + AT, Tynay)
'y no
- yes
yes ’ Is Criteria([Ts, Tx]) ok? }—»’ Is Tg = Tmax?
lno
[Is AT > ATy ? o T = T — AT ves
no
. J

~ Stop
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Batch size selection

Norm criteria

¢ Initially wo = 0 so Aw, = 0.

e Criteria in batch selection: ||Kw\$||/||Awy|| < B.
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Batch size selection

Norm criteria visualization

10 -

Norm

10 10° 10¢
Data dimension p

Prior || Aw,|| and likelihood ||Aw,| for 8 = 1.
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Results
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Results on a case

e Upscaled well is used as ground truth.

e Reflectivity method h(x) and observation noise model used
to generate data.

e Goal is to infer the truth, with uncertainties, from common
mid point gather data.
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Seismic common midpoint gather
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Results

2 3
Offset [km)]

Partitioning windowed batches of seismic data.
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Results

Depth [km]

[0 0T v
v, [km/s] v, [km/; p [g/en

Acoustic velocity Shear velocity Density

Ensemble standard deviation over analysis cycles.
Order is from lightest (initial ensemble) to darkest (final analysis).
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Results

Depth [km]

Acoustic velocity Shear velocity Density

Estimation bias and standard deviation.
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Results

oy hows] i ' )
Acoustic velocity Shear velocity Density

Prior and Posterior and Truth.
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Summary
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Summary

e Seismic waveforms are complicated data. Non-uniqueness
(multimodal posterior) is an inherent problem with seismic
inversion. Ensemble-based method does not (directly)
support such solutions.

e Use of iterative scheme and norm criteria for adaptive data
assimilation window gives less tendency of wrong mode.

* Many more areas to look into; colored noise, model error
(layering), prior specification, etc.
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Thank you for your
attention!
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