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Motivation and method

EnKF - Super-resolution (SRDA)
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Model used

Model used: Quasi-geostrophic model[1]

Configuration  State size  Cost

HR 129x129  C
LR 65x65 (/8
ULR 33x33 (/64

Observations:

- True value perturbed by a gaussian noise
of standard deviation 2

- available every At =12

- positionned along simulated satellite
tracks (black dots on the figures)

High resolution model
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Model used: Quasi-geostrophic model[1]

Configuration  State size  Cost

HR 129x129  C
LR 65x65 (/8
ULR 33x33 (/64

Observations:

- True value perturbed by a gaussian noise
of standard deviation 2
- available every At =12

- positionned along simulated satellite
tracks (black dots on the figures)

Downscaling operator?
A simple cubic spline interpolation
A neural network
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Training set for the neural network

» Running one simulation of the HR model.
» Computing a dataset of matching pairs between a (U)LR and a HR state:

(XL, Xs1,k)
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U: Upscaling (subsampling
operator)




Training set for the neural network

» Running one simulation of the HR model.
» Computing a dataset of matching pairs between a (U)LR and a HR state:

(XL ks XEL,R)
’ XH,k \
U: Upscaling (subsampling
- Mu ¢ operator)
D: Downscaling (Neural
To2

XH,k—1

network)

XL, h— X .
il Lk » Size of the dataset: 10,000

» 8000 for training / 2000 for
validation
- My ¢+




Setup of the neural network

Architecture of the enhanced deep super-resolution network (EDSR) [2]



Training of the neural network

Minimize the mean absolute error (MAE):
K s
L(w) = ID(XL k)i — Xt kil »

k=1 i=1
the pixel index
size of the state (129x 129)
size of the training set (K=8000)
weights of the neural network (~ 20, 000)
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Minimize the mean absolute error (MAE):
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Downscaling performance



Downscaling performance (1)

» Illustration with one sample
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Model error correction
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Model error correction

Section used for
the Hovmuller plot
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Score on the validation dataset
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Super-resolution data assimilation performance

Twin experiments with 500 assimilation cycles
Sensitivity analysis to find the optimal localisation and inflation
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Super-resolution data assimilation performance
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Super-resolution data assimilation performance

Low-resolution correlation Ultra Low-resolution correlation
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Spread/error of the ensemble
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Spread/error of the ensemble
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Time performance
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Time performance

Running 25 members sequentially

Same inflation and localization coefficients

Time s. SRDA-cubic SRDA-NN EnkF
LR ULR LR ULR HR LR ULR

Integration 192 84 188 82 1144 168 62
Downscaling 13 11 34 38 = = =
Assimilation 313 298 304 294 284 76 22
Upscaling 14 12 13 12 = = =
Total 532 405 539 426 1428 244 84

Time s. LR ULR

Training 494 531
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5. Conclusion and perspectives
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Conclusions/perspectives

Main results

SRDA performs a DA close to the High-resolution model, accuracy for the
cost of a low-resolution model,

The NN can correct systematic differences of eddy propagation caused by
low resolution,

The results are stable in time,

The spread is well represented.
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Conclusions/perspectives

Main results

SRDA performs a DA close to the High-resolution model, accuracy for the
cost of a low-resolution model,

The NN can correct systematic differences of eddy propagation caused by
low resolution,

The results are stable in time,

The spread is well represented.

Perspectives

Application to a more realistic (multivariate) model,
Application only to local regions of the domain,
Use NN-downscaling for the initialization of forecasts.
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