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DA from model-driven to (a bit more) data-driven

I In geosciences we possess a “good knowledge” of the laws governing the system.

IThe DA ability to combine model and data has been pivotal to the success of DA from the early time.

IUsing the model, information propagates from observed to unobserved regions.

Part I
Model-driven DA or How shaping the DA algorithm to the model in hands

IBut models are not perfect and neither complete.

IRecently, machine learning tools have shown formidable in retrieving hidden dynamics only from data.

Part II
Data-driven DA or How making DA and ML joining forces
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Part I: Model-driven DA DA for chaotic models

DA for chaotic models: key challenges

IAtmosphere and ocean, are examples of chaotic dissipative dynamics =⇒ Highly state-dependent error
growth.

IDA must track and incorporate this flow-dependency in the quantification of the uncertainty (i.e. error
covariance).

IDissipation induces an “effective” dimensional reduction =⇒ The error dynamics is confined to a
subspace of much smaller dimension, n0 � m: the unstable subspace

IThe existence of the underlying unstable-stable splitting of the phase space expected to have enormous
impact on DA.

Questions

1 Is there any fingerprint of the unstable subspace on the fate of (En)KF and (En)KS?
2 Can dynamical properties be used to design computationally cheap DA strategies?

A. Carrassi DA from model-driven to data-driven – EnKF workshop 8th June 2021 4 / 37



Part I: Model-driven DA DA for chaotic models

Deterministic linear case: behaviour of the KF and KS

(Some) key analytic results (without controllability):

ICollapse of the uncertainty: KF error covariance
asymptotically in the span of the unstable-neutral
backward Lyapunov vectors (BLVsu) [Gurumoorthy et al
2017]

IConvergence of the covariance: Low rank, n0, KF
covariance, initialized in the span of BLVsu, converges to
the true KF one

lim
k→∞

||Pk − P̂k|| = 0

if the unstable-neutral subspace is observed [Bocquet et al
2017]. Warning: neutral modes are tricky!

m = 40, n0 = 14

ILikewise demonstrated for Kalman smoother [Bocquet & Carrassi 2017].

KF/KS reduced rank surrogates based on BLVs are possible.
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Part I: Model-driven DA DA for chaotic models

Deterministic nonlinear case: behaviour of the EnKF and EnKS

IAsymptotic rank of EnKF covariances related to multiplicity and strength of unstable Lyapunov
exponents (LEs) [Carrassi et al 2009; Gonzalez-Tokman & Hunt 2013].

IWhen the EnKF/EnKS ensemble subspace recovers the unstable subspace the unknown system state is
estimated with high accuracy (sudden drop of RMSE) [Bocquet & Carrassi, 2017].

Lorenz 96 model, m = 40,
n0 = 14

Left - Angle Unstable/Ensemble
subspaces vs (∆tobs, σobs).

Right - EnKF RMSE (green)
and Angle (purple) vs N .

0.
01

0.
04

0.
07 0.

1
0.

13 0.
2

0.
35 0.

5

∆t

0.
00

1

0.
00

8

0.
06

4

0.
51

2

4.
09

6

σ

Average angle

0

6

12

18

24

30

36

42

48

54

60

5 10 20 25 30 35 40

Ensemble size

15

20

25

30

35

40

45

M
ea

n
 a

n
g

le
 w

it
h

 t
h

e 
u

n
st

ab
le

-n
eu

tr
al

 s
u

b
sp

ac
e

Angle

5 10 15 20 25 30 35 40
0
0.20

0.50

1

2

3

4

5

A
v

er
ag

e 
R

M
S

E

RMSE

Nonlinear systems, with “weakly nonlinear” error dynamics, need only n0 members!
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Part I: Model-driven DA DA for chaotic models

What is the picture in multiscale systems with coupled DA?

IMAOOAM: Modular arbitrary-order
ocean-atmosphere model [Vannitsem et al, 2016]

IA two-layer QG atmosphere coupled, thermally
and mechanically, to a QG shallow-water ocean
layer in the β-plane.

IMAOOAM is resolved in spectral space, for
streamfunction and potential temperature, with
adjustable resolution.

Selected model configurations
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Part I: Model-driven DA DA for chaotic models

Stability analysis and the effect of the coupling

IMany “quasi-neutral” LEs.

IThe strongly coupled configurations are “less
chaotic”.

IThe addition of 16 ocean modes from m = 36 to
m = 52 and 56 acts primarily on the “quasi-neutral”
LEs ⇒ Are they related to the coupling?
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Part I: Model-driven DA DA for chaotic models

Covariant Lyapunov vectors reveal the coupling

(a) - 36wk (b) - 36st

Tondeur, et al, 2020

IUnstable and Stable CLVs show a transition in projections =⇒ Instabilities are either originated in the
atmosphere or in the ocean.

IHowever, the “almost neutral” CLVs show comparable projections on both atmosphere and ocean =⇒ They are
a manifestation of the coupling.

Coupled DA should rely on CLVs to propagate information across model components
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Part I: Model-driven DA DA for chaotic models

Strongly coupled EnKF: instabilities tracking & minimum ensemble

IAngle ensemble span with unstable-neutral (left) and unstable plus quasi-neutral modes (center).
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In coupled DA, all “quasi-neutral” modes – related
to the coupling – must be taken into account

Carrassi et al, 2021
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Part I: Model-driven DA DA for chaotic models

From deterministic to stochastic models

xk =Mk:k−1(xk−1) + ηk, ηk ∈ N (0,Qk)

IModel error injects uncertainties in all directions
(Qk is usually full rank).

IUncertainty in the stable LVs no longer zero,
but still bounded. ⇒ How large?

IThe bounds, Ψi
k, depend directly on the variance

of the local instabilities [Grudzien et al 2018a].

IFor systems with high temporal variability
(LLEs with high variance) the error in some table
modes can be bound to impractically large values.

m = 10 and n0 = 4

In stochastic systems it is necessary to include weakly stable BLVs of high variance
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Part I: Model-driven DA DA for chaotic models

The interplay among nonlinearity, sampling and model error: The upwelling effect

IThe error in the filtered space (“seen” by DA) is given recursively by [Grudzien et al 2018b]

εf
k+1 = (Uff

k+1 −Uff
k+1KkHkEf

k)εf
k −Uff

k+1Kkε
obs
k + ηf

k + (Ufu
k+1 −Uff

k+1KkHkEu
k)εu

k

IThe terms in black highlight the stabilising effect of the DA . [Carrassi et al 2008b].

IThe terms in red describe the dynamical upwelling of the unfiltered to the filtered variables.

I It causes the filter to underestimate the error and implies the need for inflation.

I It is driven by sampling error, n < m, but is exacerbated by stochastic noise.

EKF solves the full-rank recursion.

EKF-AUS solves the low-rank recursion
without upwelling (black terms only).

EKF-AUSE solves the low-rank recursion
with upwelling (black+red terms).
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Part I: Model-driven DA DA for chaotic models

How to make use of instabilities in DA - Assimilation in the unstable subspace

IThe Assimilation in the Unstable Subspace uses it to perform the assimilation
Reduce problem size to that of the unstable directions.
Accurate and computationally efficient.
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Carrassi et al, 2008

IAtm QG model of O(105) degrees of freedom and
n0 = 24 non-negatives LEs.
I3DVar-AUS: 1 unstable mode used to assimilate
observations in its proximity.

The information in a single unstable direction
sufficient to reduce error as much as a 30

members EnKF
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Part I: Model-driven DA DA for chaotic models

The roles of instabilities in Bayesian DA: A look at particle filters
ICan we use in a PF as few data as the number of error growth directions?
IRevisiting the curse of dimensionality for chaotic dynamics?

RMSE of EnKF and Particle
filter (bootstrap filter) vs #Obs
(Ny)

Observe the first Ny system’s
components (left) or along the
first Ny Lyapunov vectors
(right).

Experiments and figure from
P. Raanes.

R
M
SE

#OBS #OBS
Carrassi et al 2021

Targeting observations to the directions of dynamical growth of the uncertainty is very efficacious

The RMSE never degrades with the inclusion of more observations beyond Ny > n0 =⇒ the required
#particles depends on the rank of the unstable-neutral subspace.
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Part I: Model-driven DA DA with adaptive mesh models
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Part I: Model-driven DA DA with adaptive mesh models

DA for adaptive mesh models

INumerical models using adaptive moving meshes have become increasingly prevalent in recent years.

IApplications for systems displaying highly localised structures such as shock waves or interfaces =⇒
Mesh resolution is increased in the proximity of the localised structure.

IOr fluids in a Lagrangian frame =⇒ Move the nodes of the mesh with the dynamical flow.

IMesh adaptation can include remeshing: a procedure that adds or removes mesh nodes according to
rules reflecting constraints in the numerical solver =⇒ Mesh size is not longer conserved.

Challenges for DA

1 Position of nodes change in time =⇒ Difficult to compute gradients.
2 Number of nodes and element of the mesh changes too =⇒ Difficult to compute gradients

and to connect to couplers.
3 Different state space’s size for each ensemble members =⇒ How do we compute

ensemble-based statistics in ensemble-DA?
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Part I: Model-driven DA DA with adaptive mesh models

An example of adaptive mesh model: The sea-ice model neXtSIM Rampal et al, 2016

For navigation purposes =⇒ Needs for detailed short-term predictions of sea-ice leaks and opening
On longer timescales =⇒ Spatio-temporal characteristics of sea ice control locations and intensity of energy
gas & momentum exchange between ocean, ice and atmosphere

IneXtSIM treats sea-ice as an elastic solid that can break following a cohesion parameter

IneXtSIM is solved on a 2D unstructured triangular Lagrangian adaptive moving mesh.

I It uses remeshing ⇔ Insert/Remove nodes for computational accuracy/economy.

Heat fluxes Opening on a polynya north of Greenland
(Sea ice thickness [m])
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Part I: Model-driven DA DA with adaptive mesh models

Proposed strategy: Projected EnKF

I Introduce a reference mesh with given properties (e.g. uniformity,
regularity) onto which project each members.

IPerform the analysis update on the reference mesh.

IMethodology and results in Aydogdu et al, 2019.

How to choose the reference mesh? Can we do it based on the model?

IThe resolution range in the adaptive moving mesh reflects the computational constraints of the physics
IWe use these constraints to define the resolution of the reference mesh based on the maximum/minimum possible
resolution of the individual adaptive moving meshes in the ensemble. We consider two cases:

1 High resolution reference mesh (HR): at most one node of an adaptive mesh in each of its cells
2 Low resolution reference mesh (LR): at least one node in each cell of the fixed reference mesh.
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Part I: Model-driven DA DA with adaptive mesh models

Projected EnKF: numerical results in 1D

Burgers’ equation ∂u
∂t

+ u ∂u
∂z

= ν ∂
2u
∂z2 , z ∈ [0, 1)

Kuramoto-Shivasinsky ∂u
∂t

+ ν ∂
4u
∂z4 + ∂2u

∂z2 + u ∂u
∂z

= 0, z ∈ [0, 2π)
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Part I: Model-driven DA DA with adaptive mesh models

Joint physics and mesh update

I If the mesh is dynamic and dependent on the physics, can we update the mesh as well?

ICan we do it from just the physical observations?

IWe develop a DA method
updating both physical variables
and the mesh.

IThis leverages the information
carried in the mesh
structures that drive their
locations ⇒ Better gradients.

IThe shape of ensemble-based
variance closely matches that of
the gradient ⇒ including the node
locations in the state vector
encodes a deeper level of
information into the DA process.

Sampson et al, 2021
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Part I: Model-driven DA DA with adaptive mesh models

neXtSIM : Preliminary results - Cheng, Chen, Aydogdu et al,
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Data-driven DA
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Data-driven DA

Part II - Combining DA and ML

IMany works on data-driven reconstruction of the dynamics in DA and ML: Park and Zhu 1994; Wang and Lin 1998; Paduart et

al. 2010; Brunton et al. 2016; Lguensat et al. 2017; Pathak, Lu, et al. 2017; Harlim 2018; Dueben and Bauer 2018; Long et al. 2018;

Fablet et al. 2018; Bocquet et al., 2019; Bonavita and Laloyaux, 2020; Vlachas et al. 2020; Brunton et al. 2016; Farchi et al. 2021

and many more...;
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Data-driven DA

Objectives of this work

IGiven the dataset yobs
k (1 ≤ k ≤ K)

yobs
k = Hk(xk) + εok εok ∈ N (0,R)

observed from an underlying dynamical model:

dx
dt = φ(x) with resolvent xk+1 =M(xk) = xk +

tk+1∫
tk

φ(x) dt

DA+ML for two complementary goals

1 Emulate the full modelM(x).
2 Infer the unresolved scale effect and build an hybrid physical/data-driven model.
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Data-driven DA Emulator generator
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Data-driven DA Emulator generator

Emulating a model by combining DA and ML [Brajard et al, 2020]

Emulation of the resolvent combining DA
and ML:

xk+1 =M(xk) ≈ GW(xk) + εm
k ,

where GW is a neural network
parameterised by W and εm

k is a stochastic
noise.

IFor the DA part we use the Finite-Size
Ensemble Kalman Filter (EnKF-N).

IFor the ML part we train a neural net

Proposed DA+ML algorithm

Initialization: W

Fix W, Estimate xa
1:K and Pa

1:K using yobs
DA step

Fix xa
1:K and Pa

1:K , Estimate W
ML step

Cycle

Stop if converged
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Data-driven DA Emulator generator

Proposed DA+ML algorithm

I Step 1 - Data Assimilation: estimate the state field x1:K (the analysis) and associated (analysis) error covariance,
Pk, based on the fixed model parameters W and using sparse and noisy data, y.

I Step 2 - Machine learning: using x1:K and Pk from DA estimate W

The neural network can be expressed as a parametric function GW(xk) = xk + fnn(xk,W) where fnn is a
neural network and W its weights; fnn is composed of convolutive layers.
The determination of the optimal W is done in the training phase by minimising the loss function:

L(W) =
K−Nf−1∑
k=0

Nf∑
i=1

∥∥∥G(i)
W (xk)− xk+i

∥∥∥2

P−1
k

,

where Nf is the number of time steps corresponding to the forecast lead time on which the error between the
simulation and the target is minimised (with “coordinate descent” Bocquet et al. (2020)).
Pk is a symmetric, semi-definite positive matrix estimated using the analysis error covariances from the DA
step.
This time-dependent matrix, Pk, plays the role of the surrogate model error covariance matrix and gives
different weights to each state during the optimisation process.
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Data-driven DA Emulator generator

Emulating the underlying dynamics: Power spectrum density

Lorenz 96 IAfter one cycle, some frequencies are
favoured (see the peak at ∼ 0.8Hz) and
indicate that the periodic signals are
learnt first.

IAt convergence, the surrogate model
reproduces the spectrum up to 5 Hz but then
adds high-frequency noise.

ILow frequencies are better observed
and better reproduced after the DA step.

IThe PSD has been computed using a long
simulation (16, 000 time steps), which means
that the surrogate model is very stable.

Brajard et al., 2020
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Data-driven DA Emulator generator

Emulating the underlying dynamics: Lyapunov spectrum

Lorenz 96
IAccurate unstable spectrum ⇒ Same
error growth rate and Kolmogorov
entropy, as the true model.

ILess accurate reconstruction of the
neutral and quasi-neutral part of the
spectrum.

IThis is similar to what found in Pathak et al.
(2017). Maybe due to the slower convergence
(linear vs exponential) of the neutral exps
Bocquet et al. (2017).

IThe stable part of the spectrum is shifted
toward smaller values ⇒ PDFs contracts
faster than in the true model, i.e. surrogate
model more dissipative than the truth.

Brajard et al., 2020
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Data-driven DA Emulator generator

Forecast skill

Hovmøller plot of the true and surrogate models (in Lyapunov time∗, LT)

IThe simulations start from the same initial
conditions.

IGood prediction until 2 LTs. Error
saturation at 4-5 LTs.

I (*): the time for the error to grow by a
factor e.
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Data-driven DA Inferring parametrizations
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Data-driven DA Inferring parametrizations

Combined DA-ML to infer unresolved scales parametrizations

The objective is to produce a hybrid (physical/data-driven) model

x(t+ δt) =Mϕ[x(t)] +MUN[x(t)],
where:

x(t) is the state of the dynamical system
Mϕ is the physical model (assumed to be known a priori)
MUN is the unresolved component of the dynamics to be inferred from data
δt is the integration time step

MUN is approximated by a data-driven model represented under the form of a neural network whose
parameters are θ: Mθ[x(t)]
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Data-driven DA Inferring parametrizations

Proposed approach

Simplified description of the algorithm:
1 Estimating the state xa

1:K . At each time tk, we calculate a forecast xf :

xf
k+1 = xf(tk + ∆t) = (Mϕ)Nc (xa

k)

An observation yk+1 is assimilated with strongly coupled EnKF to produce an analysis xa
k+1

2 Determining an estimation of the unknown part of the model. We assume that:

x(t+ ∆t) ≈ (Mϕ)Nc(x(t)) +Nc · MUN[x(t)]
x(t) ≈ xa(t)

We consider thatMUN(xk) ≈ zk+1 = 1/Nc ·
(
xa
k+1 − xf

k+1
)

=⇒ The “target” (i.e. the model error)
is estimated using the analysis increments (?).

3 Training a neural networkMθ by minimising the loss L(θ) =
∑K−1

k=0 ||Mθ(xa
k)− zk+1||2

4 Using the hybrid modelMϕ +Mθ to produce new simulations (e.g. to make forecasts).

Brajard et al, 2021
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Data-driven DA Inferring parametrizations

Experiments with MAOOAM

1 Truth: na = 20 and no = 8 modes for atmosphere and ocean. Total dimension Nx = 56.
2 Truncated: na = 10 and no = 8 modes for atmosphere and ocean. Total dimension Nx = 36.

IThe truncated model is missing 20 high-order atmospheric variables
IThere is not locality in spectral space so the NN is made of 3 layers multi-layer perceptrons

RMSE-f of hybrid and truncated MAOOAM models
RMSE-f(lead time τ) ψo,2(2 years) θo,2(2 years) ψa,1(1 day)
Truncated 0.23 0.21 0.36
Coupled DA-ML hybrid 0.10 0.06 0.28

The hybrid models have superior skill to the truncated model.
The improvement is larger for the ocean that is fully resolved =⇒ Enhanced representation of
the atmosphere-ocean coupling processes thanks to coupled DA.
The atmosphere is improved less: the hybrid is not very good in representing the fast processes.
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Data-driven DA Inferring parametrizations

Numerical experiments: atmosphere-ocean model MAOOAM

IThe truncated model visits areas of the phase space that are not admitted in the real dynamics.

IDiscrepancies are reduced by the hybrid models.

Brajard et al, 2021
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Forward looking

Forward looking - Some open interesting (to me only?) questions

ITheory of DA for multi-scale random and/or non-autonomous climate dynamics (in relation to random
attractor and/or pull-back attractor) (discussion ongoing with C. Grudzien & others)

ICan we use CLVs to guide strongly coupled DA?

IWe have used the underlying system’s unstable properties to design DA. Can we do the opposite: use DA to
infer key invariant quantities, e.g. KS, LEs (ongoing work with Y. Chen & others).

IComputing instabilities on-the-fly is too expensive. Can ML providing a state-dependent map of
LLEs/LLVs to be used in DA or in ensemble generation? (ongoing work with D. Ayers & others).

IMoving mesh models have trouble to be coupled and discontinuous Galerkin methods is becoming an alternative
to keep fine features description in an Eulerian mesh. Can we adapt DA to the node-dependency of the
DGM? (ongoing worh with C. Jones & others).

I Sea-ice models calibration is challenging, especially in the Marginal Ice Zone. Can we use combined DA+ML to
infer sub-grid scales parametrization of the sea-ice or to emulate some physical processes? (ongoing
work with L. Bertino, M. Bocquet, J. Brajard & others)
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