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Regularization

The sample covariance matrix is a good estimator of the true covariance matrix — if the ensemble size

is much greater than the size of the matrix, which is never the case in high-dimensional problems.

The (small) ensemble simply contains too little information to reliably estimate the covariance matrix.

Hence, additional information is needed ⇒ regularization.
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Popular covariance regularization techniques and our proposal

1 Domain localization

2 Covariance localization

3 Mixing with climatological (time mean) covariances

These techniques are simple and effective, but

(i) they are ad hoc, there are no underlying stochastic models, no optimality criteria satisfied.

(ii) they require tuning. In a practical “heavy-weight” system tuning hundreds of interacting parameters

can be problematic.

(iii) they, basically, first, allow the noise to contaminate the signal (by relying on sample covariances)

and, then, apply a device to filter out the noise.

In this research, we propose a model for forecast-error covariances and an estimator of a

square root of the covariance matrix directly from the ensemble.
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Non-stationarity

The key feature of the prior distribution that allows EnKF to thrive is non-stationarity (both in time and

in space).

(If there is no non-stationarity, we just have to carefully estimate the time-mean prior covariances and

then use them every time.)

So, the spatial model we wish to build is to be non-stationary in space (and, of course, in time).

M Tsyrulnikov, A Sotskiy, D Gayfulin (HMC) Regularization of the ensemble Kalman filter with constrained non-stationary convolutionsEnKF Workshop. Online, 10 June 2021 3 / 32



Approach

We aim to build

a non-stationary stochastic model for the spatial forecast error field

an affordable in high dimensions estimator of the model given the prior ensemble.

The ultimate goal is to use the new technique for practical data assimilation in meteorology.
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The non-stationary spatial model
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Process convolution model

Let the forecast-error field 𝜉(x) be the general linear Gaussian process:

𝜉(x) =

∫︁
w(x , y)𝛼(y) dy

(𝛼 is the white noise). Its space-discrete counterpart is

𝜉 = W𝛼

(with 𝛼 ∼ N(0, I)), so that

B = WW⊤

The model is overcomplete (too general): with any orthogonal matrix Q, W′ = WQ is another

“square root” of B.

So, W needs to be constrained to become unique.

Another required feature of W is sparsity.
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Stationary process convolution model

∙w(x , y) = u(x − y) corresponds to a homogeneous model on Rd or S1.
∙w(x , y) = u(𝜌(x , y)) corresponds to an isotropic model on Rd or S2.
∙u(x) is the convolution kernel.

To simplify the presentation, let us consider the process on the unit circle S1:

𝜉(x) =

∫︁
u(x − y)𝛼(y) dy

In spectral space, with 𝜉(x) =
∑︀ ̃︀𝜉ℓ eiℓx: ̃︀𝜉ℓ ∝ ̃︀uℓ ̃︀𝛼ℓ

The spectrum of 𝜉(x) is then

fℓ := E |̃︀𝜉ℓ|2 ∝ |̃︀uℓ|2
Given the spectrum fℓ, the ambiguity in u(x) comes here from the modulus of ̃︀uℓ.
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Selecting a unique stationary model

For computational reasons, we need the kernel u(x) to be as localized as possible. Therefore, we require

that u(x) is the narrowest kernel among all that satisfy |̃︀uℓ|2 ∝ fℓ with the fixed {fℓ}.

It can be shown that the unique narrowest kernel has the real and non-negative Fourier transform.

Correspondingly, the narrowest kernel u(x) is a positive-definite function.

We postulate this feature for the non-stationary model as well.

M Tsyrulnikov, A Sotskiy, D Gayfulin (HMC) Regularization of the ensemble Kalman filter with constrained non-stationary convolutionsEnKF Workshop. Online, 10 June 2021 8 / 32



From stationary to non-stationary model

Stationary:

𝜉(x) =

∫︁
u(𝜌(x , y))𝛼(y)dy

Let the kernel u also depend on the location x (Higdon 2002):

𝜉(x) =

∫︁
u(x , 𝜌(x , y))𝛼(y) dy
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The non-stationary model

On S1 and S2: 𝜉(x) =
∫︁

u(x , 𝜌(x , y))𝛼(y) dy

where u(x , 𝜌) is a positive-definite function of its 2nd argument 𝜌 (this is our first constraint).

Fourier transforming u(x , 𝜌) w.r.t. 𝜌 yields the equivalent definition of the model:

On S1: 𝜉(x) =
ℓmax∑︁

ℓ=−ℓmax+1

𝜎ℓ(x) ̃︀𝛼ℓ e
iℓx

On S2: 𝜉(x) =
ℓmax∑︁
ℓ=0

𝜎ℓ(x)
ℓ∑︁

m=−ℓ

̃︀𝛼ℓm Yℓm(x)

where ̃︀𝛼ℓ, ̃︀𝛼ℓm are uncorrelated zero-mean unit-variance random variables, Yℓm are spherical harmonics,

and, in both cases, 𝜎ℓ(x) ≥ 0.

When 𝜎ℓ(x) = 𝜎ℓ (i.e. independent of x), the model Eq.(*) becomes stationary.
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Local spectrum

On the circle (similarly, on the sphere), having the model

𝜉(x) =
∑︁

𝜎ℓ(x) ̃︀𝛼ℓ e
iℓx (*)

with independent ̃︀𝛼ℓ, we have

Var 𝜉(x) =
∑︁

𝜎2
ℓ (x) =

∑︁
fℓ(x)

so that we can call fℓ(x) = 𝜎2
ℓ (x) the local spectrum and the model Eq.(*) the

Local Spectrum Model (LSM).
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Weakly non-stationary model

The model

𝜉(x) =
∑︁

𝜎ℓ(x) ̃︀𝛼ℓ e
iℓx

is unique but it still has too many degrees of freedom (the functions 𝜎ℓ(x)) to be reliably estimated

from the ensemble.

Therefore, our second constraint is the assumption that the structure of the process (i.e. the local

spectra {𝜎2
ℓ (x)} or the kernel u(x , 𝜌)) varies in space (i.e. with x) on a scale significantly larger than

the length scale of the process itself.

This greatly reduces the number of degrees of freedom, makes the process weakly non-stationary or

locally stationary (cf. evolutionary spectrum by Priestley 1965).
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Smooth spectra

Finally, we assume that {fℓ = 𝜎2
ℓ (x)} varies smoothly in wavenumber space space (i.e. with ℓ). This is

our third constraint, which further reduces the number of degrees of freedom to be estimated from the

ensemble.
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Summary of the spatial model

The Local Spectrum Model is a process convolution model with the spatially variable kernel u(x , 𝜌):

𝜉(x) =

∫︁
u(x , 𝜌(x , y))𝛼(y) dy

satisfying:

1 u(x , 𝜌) is a positive definite function of the distance 𝜌

2 u(x , 𝜌) a smooth function of the physical space location x

3 The Fourier image of u(x , 𝜌) w.r.t. 𝜌, i.e. 𝜎ℓ(x) is a smooth function of the wavenumber ℓ.
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Estimation of the spatial model from the ensemble
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Multi-scale bandpass filter
Motivation: as fℓ = 𝜎2

ℓ (x) are constrained to be smooth functions of the wavenumber ℓ, measuring the

spectrum fℓ averaged over a few wavenumber bands would suffice to recover the whole spectrum.

We introduce J = 5...10 linear bandpass filters with the spectral transfer functions Hj(ℓ) and impulse

response functions hj(𝜌) (j = 1, . . . , J). With the weakly non-stationary process

𝜉(x) =
ℓmax∑︁
ℓ=0

𝜎ℓ(x)
ℓ∑︁

m=−ℓ

̃︀𝛼ℓm Yℓm(x),

if 𝜎ℓ(x) only slightly change within the effective support of hj (which is a more specific formulation of

our second constraint), then the bandpass filtered processes satisfy

𝜉(j)(x) ≈
ℓmax∑︁
ℓ=0

Hj(ℓ) 𝜎ℓ(x)
ℓ∑︁

m=−ℓ

̃︀𝛼ℓm Yℓm(x)

With this equation and the standard (complex) Gaussian ̃︀𝛼ℓm, we can write down the pointwise

likelihood of 𝜎ℓ(x) given the filtered data, i.e. p(𝜉(1:J)(x) |𝜎ℓ(x)).
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Specification of the bandpass filters

Requirements:

1 The bandpass filters should have narrow enough impulse response functions – to resolve

non-stationary structures in physical space.

2 The bandpass filters should have narrow enough spectral transfer functions – to have good

resolution in spectral space.

As a compromise between items 1 and 2, we found that the transfer functions

Hj(ℓ) = e
−
⃒⃒⃒⃒
ℓ−ℓc

j

dj

⃒⃒⃒⃒
q

(with q = 2...3) work well.
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Spectral transfer and impulse response functions of the multi-scale filter
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Estimator

Working at each grid point x independently, we aim to estimate {𝜎ℓ(x)}.

Employing a Bayesian approach, we may estimate/specify a prior distribution for p(𝜎ℓ(x)) and use the

likelihood p(𝜉(1:J)(x) |𝜎ℓ(x)) to obtain the posterior

ppost(𝜎ℓ(x)) ∝ p(𝜎ℓ(x)) p(𝜉(1:J)(x) |𝜎ℓ(x))

and an optimal estimate.

We did this in a parametric setting and it worked (despite the posterior density is not convex), but the

following simpler approach proved to be more effective (and more appropriate with real-world

high-dimensional problems).
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Estimator: a simplified approach

Var 𝜉(j)(x) ≈
ℓmax∑︁
ℓ=0

H2
j (ℓ) fℓ(x)

Ω f = v

where (Ω)jℓ = H2
j (ℓ), f is the variance spectrum vector, and (v)j = Var 𝜉(j)(x).

We use the pseudo-inverse solution

Ω = UΣV⊤ ⇒ ̂︀f = Ω+ v = VΣ+U⊤ v,

and fit a two-parameter model A · g(ℓ/a) to ̂︀f.
Finally, the local spectra are transformed (again, at each x independently) to the kernels u(x , 𝜌), which,

in turn, yield the W matrix (the square root of B).

The problem is low-dimensional if solved for each x independently, and this can be done in parallel.
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Implementation in the filter
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Summary of the analysis algorithm
1 Apply the multi-scale bandpass filter to the prior ensemble and compute the band variances at all

spatial grid points (we employed spectral filtering).

2 From the band variances, compute the local spectra (using the pseudo-inversion).

3 From the local spectra, compute the kernels, i.e. the W matrix (using the inverse spectral

transform).

4 Perform a kind of thresholding of W, getting a sparse matrix.

5 Use W to compute the gain matrix:

K = (B−1 +H⊤R−1H)−1H⊤R−1 = W(I+W⊤H⊤R−1HW)−1W⊤H⊤R−1.

This numerical scheme enjoys sparsity, provides efficient pre-conditioning, and has no rank

deficiency problem.

We call the resulting filter the Local Spectrum Ensemble Filter (LSEF).

The posterior ensemble is computed as in the classical stochastic EnKF (at this stage of development).
M Tsyrulnikov, A Sotskiy, D Gayfulin (HMC) Regularization of the ensemble Kalman filter with constrained non-stationary convolutionsEnKF Workshop. Online, 10 June 2021 22 / 32



Numerical experiments
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Three non-stationary models of truth

1 static model on the circle + 1 static model on the sphere + 1 dynamic model on the circle.

All three models are hierarchical (doubly stochastic), with random parameter fields and conditionally

Gaussian true fields.

1 S1 static.

Kernel: u(x , 𝜌) = S(x) · u0(𝜌/L(x))
Two parameter fields : L(x) and S(x)

2 S2 static.

Local spectrum: fℓ(x) =
c(x)

1+(𝜆(x)ℓ)𝛾(x)

Three parameter fields : c(x), 𝜆(x), 𝛾(x)

3 S1 dynamic.

A doubly stochastic advection-diffusion-decay model (Tsyrulnikov and Rakitko, 2019, QJRMS).

Three spatio-temporal parameter fields: U(x , t), 𝜈(x , t), 𝛿(x , t).

The parameter fields are logit-Gaussian.
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An example of the non-stationary spatial field on S2
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An example of the non-stationary spatio-temporal field on S1
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Filters’ performance: static setup, dependence on ensemble size
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Filters’ performance: static setup, dependence on Non-Stationarity Strenth
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Filters’ performance: static setup, dependence on Non-Stationarity Length
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Filters’ performance: S1, dynamic setup
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LSEF needs no covariance inflation
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Conclusions

The Local Spectrum Ensemble Filter (LSEF) estimates the gain matrix directly from the prior

ensemble using a constrained non-stationary spatial convolution model.

The constraints imposed on the convolution model include slow variation of the kernel in physical

space and smoothness of the (parametric or non-parametric) kernel in spectral space.

The estimation of the convolution model is performed in spectral space: the local spectrum is

estimated gridpoint by gridpoint from the output of a multi-scale bandpass filter.

In numerical experiments with two spatial models of truth (on the circle and on the sphere) and a

spatio-temporal model on the circle, the LSEF outperformed the standard stochastic EnKF for

small to moderate ensembles and under weak to moderate non-stationarities.

The technique is computationally tractable: its non-ensemble version has been used at our center

for operational meteorological data assimilation for several years.

The End

M Tsyrulnikov, A Sotskiy, D Gayfulin (HMC) Regularization of the ensemble Kalman filter with constrained non-stationary convolutionsEnKF Workshop. Online, 10 June 2021 32 / 32


