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Ensemble data assimilation as a stochastic nonlinear- YYRCE
least-squares (NLS) problem

* Model variables: m

* Linear/nonlinear forward
simulator (or observation
operators): g

 QObservations: d°




Ensemble data assimilation as a stochastic nonlinear- N#“'R CE
least-squares (NLS) problem

Stochastic EnKF (SEnKF), ensemble smoother (ES) or iterative ES (IES) can be derived by
solving the following stochastic NLS problem™:

a'rgmm me) ZL(m“|d0, ],y) j=1,2,.
L(ma|d°,mb,y) — %(do _ g(ma))TCd_l(do _ g(ma)) +§(ma _ mb)TCn_ll(ma _ mb)

Our focus here is on IES for inverse problems (e.g., reservoir data assimilation problems)

*Luo, X. et al. (2015). Iterative Ensemble Smoother as an Approximate Solution to a Regularized Minimum-Average-Cost
Problem: Theory and Applications. SPE Journal, vol. 20, 962-982



Ensemble data assimilation as a stochastic nonlinear-
least-squares (NLS) problem

Original IES update formula

m? = mP + 5,55 (5,5 +vCa)” (a2 —g(m?)),j =12, ..., N,

=l + 8, (57CTS, + 1) S (a7 — g ()

1 1
S, = T |m? —mP,m§ —mb,...,m§y —mP]; mb = N—me}’;
1
Sg = lg(m?) —g(m"),g(m3) — g(@®),..,g(m§,) — g(@m>)];

N, — 1

N

-;:;=i

‘RCE



Ensemble data assimilation beyond NLS problems N\“R CE

argmm q ZL(ma|d°, ],y) j=1,2,.

L(m*|d°,m®,y) = D[[(d°) — T(g(m™))] + yR[P(m*) — ®(mP)]

L(m“|d", m?, y) in general beyond the form of NLS



Ensemble data assimilation beyond NLS problems

L(m®|d°,mP,y) = D[[(d°) — T(g(m®*)] + yR[®(m*) — ®(m?)]
where
» D is a distance metric for the data mismatch term
» I is a certain transform operator in the data space
» R is a distance metric for the regularization term
» @ is another transform operator in the model space

When
» I'and @ are identity operator,

> D(x) = %xTCglx
> and R(x) = %xTC;llx, with C,, = S, ST

then we recover the conventional cost function
T

1
L(m®|d°,mP,y) = E(d" —g(m®) C;*(d° — g(m®)) +g(m“ - mb)TC,;l(m“ —mP)



Ensemble data assimilation beyond NLS problems NiY*RCE

Generalized IES (GIES) update formula: the umbrella algorithm*

me = mb + 5, (Mp () + y Mg (mP,72%)) " SE., Vp[[(d®) — T(g(m?))]

)

*Luo, X. (2021). Novel iterative ensemble smoothers derived from a class of generalized cost functions. Computational
Geosciences, 25(3), 1159-1189.



Correspondence between the update formulae N\WR CE
of IES and GIES

mf = + S (718 + YD) ST (40 =) = mp 4 (Mo (%) + (o 7)) Sy V[T = T )

I N .

c;t (do _ g(m]b)) Vp[T'(d®) —T'(g(m}))] GIES => IESif T = identity, D(x) = %xTCglx
Sm/Sg Seo/Steg GIES => IES if ®/T = Identity,
Cnl/Cqt vZ[@(m?) — &(mP)|/V3[I(d°) — T(g(MmP))] GIES=>IESif R(x) = %x"c;&x/D (x) = %xTCglx
sTcys, Mp(m”) = ST.gV3[I(d°) — T(g(m"))] Sreg  GIES => IESIfT = identity, D(x) = xTCzx
I Mg(mp,mP) = SEVE[@(mP) — d(mP)] So  GIES => IESif d = identity, R(x) = %xTC,,]lx, with

Cm = Sms'g'z



Outline

* Aclass of offspring algorithms with a mixture of
regularization terms



st

¢£1-GIES as a class of offspring algorithms ~~ N#_ /R CE

1 T
L(m®|d®,m?,y) =3 (d° = gm®) Cz'(d° - g(m®) +LR[@(m®) — d(m?)

R[®(m®) — d(m?)] = T, w; [|B(®;(m®) — &, (m)I%, pi/q; € Ry
* w;/B;/ ®;: mixture coefficient/weight matrix/transform operator for the i-th regularization term

* ForB € R™*™x x € R™x, the {’q metric of the vector Bx € R™»b defined as

IBxlly, = (X.2,1(Bx), Ip)p

(Bx), = me B, x¢ the e-th element of Bx, B, s/x; elements of B/x



{’g-GIES as a class of offspring algorithms Nf""sR CE
Update formula of fg-GIES*

m? = mP + S, (STC71Sy + ¥ Mg (m}?,mb))_l stegt (a0 - g(md))

)

Notations (: Schur (or element-wise ) product;
~: Raising all elements of a vector to a certain power

*Luo, X. (2021). Novel iterative ensemble smoothers derived from a class of generalized cost functions. Computational
Geosciences, 25(3), 1159-1189.



q . .
¢,-GIES as a class of offspring algorithms

K
R[®(m®) — d(mP)] = z w; [|B;(®;(m%) — q’i(mb))”gi
i=1

 Whenp =q =2,K =1, the £5-GIES algorithm is reduced to the original IES in Luo et al.*

* In general, infinitely many choices for the (p, q) pair (p, g not necessarily being integers), leading to BZ-GIES
algorithms beyond the form of nonlinear-least-squares in general

* Also many choices for B; /®;

*Luo, X. et al. (2015). Iterative Ensemble Smoother as an Approximate Solution to a Regularized Minimum-Average-Cost
Problem: Theory and Applications. SPE Journal, vol. 20, 962-982



Applications of £-GIES: Case study 2

PERMX; Reference

Model size (gridblock)

Phases
Wells

Data for history
matching

Parameters to
estimate

History matching
algorithm

50 x 50

Oil, gas and water
4 producers + 1 injector

BHP, WWPR, WGPR and WOPR, from Day 1 — Day
1500

Permeability (PERM) and porosity (PORO) on all
gridblocks

7 fg-GIES (including the original IES), with 100

ensemble members + correlation based adaptive
localization, and 10 iteration steps



Applications of £-GIES: Case study 2

Table 4 Performance of E% -GIES algorithms in terms of RMSE, which are evaluated with respect to the ensembles of reservoir models at the final
iteration steps

Rank Binary code History-matching data mismatch RMSE of PORO RMSE of PERMX Weights
(mean + STD) (mean + STD) (mean + STD) (orp, o, @3)
Results 1 001 1191.5353 + 1455.8489 0.0619 £ 0.0035 0.4045 £ 0.025 0,0, 1)
(more information 2 010 502.441 + 96.276 0.0637 £ 0.0033 0.4156 + 0.0235 (0, 1,0)
available 3 111 492.3271 £ 86.3171 0.0637 £0.0033 0.4194 £ 0.024 (0.4,04,0.2)
in the paper*) 4 110 488.5942 £+ 86.6626 0.0635 £0.0033 0.4202 £ 0.0239 (0.5,0.5,0)
5 011 548.0362 £ 314.1955 0.0636 £ 0.0033 0.4208 £ 0.0242 (0,0.5,0.5)
6 100 501.1523 £ 94.3388 0.0635 £0.0033 0.4211 £ 0.0244 (1,0,0)
7 101 498.7347 4+ 92.2996 0.0637 £ 0.0033 0.4238 £ 0.0246 (0.5, 0,0.5)

The E%—GIES algorithms are listed in an ascending order of mean RMSE values. In particular, performance of the E;{,—GIES algorithm
corresponding to the original IES is highlighted (in red)

*Luo, X. (2021). Novel iterative ensemble smoothers derived from a class of generalized cost functions. Computational
Geosciences, 25(3), 1159-1189.



Applications of fg-GIES: Case study 2 NM_R CE

PERM estimated by the

£5-GIES (the original IES) £2-GIES (achieving the
best results in this case

study)

PERM estimated by the



Applications of ¢1-GIES: Case study 2 ~ N7 R CE
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Outline

* Aclass of offspring algorithms for data assimilation with
soft constraints (DASC)



Constrained GIES (C-GIES) for data assimilation N """ R CE
with soft constraints (DASC)

Available sources of information in a DASC problem, :
> Original observation system: d'™ = g(m)
> Equality constraint system: f.,(m) = 0

> Inequality constraint system: h;,(m) < 0



Constrained GIES (C-GIES) for data assimilation N R CE
with soft constraints (DASC)

L(m®|d°,mP ) = D|I'(d°) — [(g(m®))| +g(m — mb)TCn}l(m — m?)

T

1
D[F(do) - F(g(ma))] = ) (do - g(ma)) Cc?l(do - g(ma)) T+ a Deq (O — feq (ma)) + B Din(0 — hin(M%))



Constrained GIES (C-GIES) for data assimilation N -------- R CE
with soft constraints (DASC)

Update formula of C-GIES*

m; = m]b + K (SgCgl (do — g(m}’)) + anTquDeq [0 — feq(m]b)] + )
-1
K = Sy, (SF €7t Sg+ ST V3, [0 — foq(?)]St,, + +y1)
Red: impact of equality constraints on model update
: impact of inequality constraints on model update

a = [ = 0 = original IES algorithm

*Luo, X., Cruz, W. (2021). Data assimilation with soft constraints (DASC) through a generalized iterative ensemble smoother.

Submitted for review



Constrained GIES (C-GIES) for data assimilation N """ R CE
with soft constraints (DASC)

m? =mP + K (Sg c7t (do - g(m]b)) +ast Vp, [0 = fug(mP)] + )

Leveraging efficient solutions to the following two problems*:
* Localization in the presence of constraints

* High dimensionality of the constraint system

*Luo, X., Cruz, W. (2021). Data assimilation with soft constraints (DASC) through a generalized iterative ensemble smoother.
Submitted for review



umerical example 2: 3D Brugge field

Model size 139x48x9, with 44550 out of 60048 being

active gridcells

Parameters to estimate PORO, PERMX, PERMY, PERMZ. Total number is
4x44550 = 178,200

S | Production data (Y10 yrs)  BHP, OPR, WCT. Total number is 1400

i Constraint system Upper and lower bounds for each parameter.
s N Dimension of the constraint system
S e =2x 178,200 = 356,4000

History matching algorithm  C-GIES + correlation-based adaptive
localization, 10 iteration steps

Grid geometry of the Brugge field



Numerical example 2: 3D Brugge field

Table 3: Performance of the two history-matching algorithms in the Brugge case study. The performance is
measured in terms of RMSE (mean + STD), which are computed using the ensembles of reservoir models at the
first and final iteration steps. Other quantities reported here include data mismatch during history matching,
and the value of barrier function (in the form of mean + STD), with respect to both the initial and final
ensembles. For RMSE, the values are calculated with respect to PERMX, PERMY, PERMZ (in the scale of

natural logarithm), PORO, and the combination of all these variables, respectively.

Initial ensemble O-1ES C-GIES-IN

3.6232 x 109 + 1.4900 x 101°

Data mismatch (3.9616 + 2.9947) x 107 (7.0091 + 5.5507) x 10°

Value of barrier function -3.4172 x 10° 4+ 6.6936 x 10%  -3.4217 x 10° 4 5.9683 x 10®  -3.4258 x 10° 4+ 3.9202 x 103

RMSE (PERMX)
RMSE (PERMY)

RMSE (PERMZ)

RMSE (PORO)

RMSE (all together)

1.6585 £ 0.3827

1.6612 £ 0.3794

2.0077 £ 0.4096

0.0302 £ 0.0033

1.5450 £ 0.3362

1.4167 & 0.2545

1.4198 + 0.2515

1.8054 £ 0.3101

0.0280 £ 0.0025

1.3498 &+ 0.2344

1.4119 + 0.2284

1.4133 += 0.2244

1.7636 £ 0.2916

0.0285 £ 0.0028

1.3327 £ 0.2103

YRCE
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Discussion and conclusion

e GIES as an umbrella algorithm, able to derive infinitely many new IES

q
> £2-GIES
» C-GIES

» Likely more
* Applicable to large scale problems

 Remaining open problems

» Optimal choices of weight coefficients (e.g., a, )

> Optg)rlnal choices of the cost functional D[I'(d®) — I'(g(m*))] + yR[®(m?*) — ®(mP)] in various
problems
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Applications of £-GIES: Case study 1

Reference permeability field
= — 10000
-— - 8000

16000

4000

2000

Model size (gridblock)

Phases
Wells

Data for history
matching

Data for cross-
validation

Parameters to
estimate

History matching
algorithm

45 x 45

Oil and water
8 producers (P1-P8) and 8 injectors (11-18)

BHP from injectors + OPR and WPR from producers,
from Day 1 — Day 1900

Forecast BHP from injectors + forecast OPR and WPR
from producers, from Day 1901 — Day 3800

Permeability on all gridblocks

31 BZ—GIES (including the original IES), with 100

ensemble members + correlation based adaptive
localization, and 50 iteration steps



Results

(more information
available

in the paper*)

Table 2: Performance of £-GIES algorithms in terms of data mismatch values during the history match-
ing and forecast periods. which are evaluated with respect to the ensembles of rescrvoir models at the
final iteration steps. The £2-GIES algorithms are listed in an ascending order of mean values of forecast
data mismatch. In particular. the €3 - GIES algorithim corresponding to the original IES is highlighted (in

red).

Rank Binary code

History-matching data muasmatch

Forecast data mmuasmatch (mean & S TIDO)»

VWelishtis

Cmean = ST

Cmean 1= S TID)

(€2, €2, €5, €Xa, €5 )

1 1 1000 1359 6202 = 3577710 2695 0909 +=511.691-1 (0.3 0.2 000

2 10011 1274 8102 = 3527197 2742 4803 = 528 4256 CO.4.0,0.0.32.0.3)

3 01001 1059 2603 = 407 _ 6390 2T7AT _A506 4= A9 9570 (O0.0.5.0.0.0.5>»

<} 10010 1628 4537 =426 .3572 2782.84601 &= 580.7321 (0.3.0.0.0.2.0>

5 01111 1307 1619 + 5S60_ 2085 2827 83018 =635 4243 (0. 025 025 025 0.25>
[=1 01011 1290 0505 + 340 . 61488 2852 5673 + 601 0067 CO.0.2.0.0.4.0.4)>

s 10001 1375 3988 +=404.3301 2889 _ 5725 =440 7436 (0.3 00002

s 11001 1639 6249490 = 397 _.6959 2967 _ 0104 = 630.3220 (0403 000 3>

S 01010 1247 89389 +— 3083 4266 303028979 = 647 2721 (O.0.5.0.0.5.0>

10 11100 1331.0531 +=456.9900 3090 .601360 4+ 651 .38506 (O0.4.0.3.0.3.0.0)

11 01101 1431 . 2121 + 899 7220 3114 9221 + 1597 _.5630 (O.04.0.4 002>

12 01110 1309 4299 + 474 6920 3232_ 04929 4+ B366_556-1 {0094 0.4 020

13 10110 1472 9386 += 6627470 3290 7245 4+ 10841258 (04003 0.3 .0

11 10111 1469 . 28300 = 672.3853 3341 .4622 £=1150.9453 (0.25.0.0.25.0.25.0.25>»
15 10000 2206 4291 += 1149 3603 33720041 =994 2162 C1.0.0.0.0)

16 11010 1638 5585 4771788 3374.60603 + 70O5. 6431 (O0.4.0.3.0.0.3.0)

17 01100 1472 6951 + 866 . 7636 3383 . 6022 1+ 1920 6565 (O.0.5.0.5.0.0)>

13 10100 2153 . 5187 4+=1051._0361 345 69544 4= 1083 .3990 (0.3 002 0.0

19 11011 14136 . 6160 &= A28 4257 3450 4318 & 745 0217 (025 0.25 0,025 0.25»
20 10101 1613.96079 =491 .3947 34564395 £=1166.0237 (O0O.4.0.0.3.0.0.3)>
21 01000 1656 5230 + 6822189 3452 2504 4+ 1555.83071 (O.1.0.0.0)
22 11101 1127 78361 4327342 3500 6883 + 895 5180 (025 025 0.25 0. 0.25>
23 11111 1346 4950 +=603.9574 3941 5423 = 3681645 (0.2 02020202
21 11110 1266 6071 =550_.7372 40445 9208 =913 8554 (025 025 025 0.25 03
25 00011 5793 . 58319 12251 _.2925 TF50944 0385 3778 9256 (O.0.0.0.5.0.5)>»
26 00010 5793 .5842 2251 2088 FT594 0438 =37 78.9230 (0.0.0.1.0>
27 00100 S723 . 5850 +2251.3011 T504 04900 L3778 0334 (0.0, 1.0.0)
28 00001 5793 5853 22512755 TS594 0512 =37 7839744 (0. 0.0 0_13»
29 00101 5793 .5856 +=2251 2960 TS594 0514 =37 783 9774 (0. 005 .00.5)
30 00110 5793 .58449 &=2251 2972 TSS9 0569 =37 783 9778 (O.0.0.5.0.5.0>
31 00111 5793 . 57833 X=2251.2818 F594. 0617 =37 78.9620 (0.0.0.2.0.4.0.44»

*Luo, X. (2021). Novel iterative ensemble smoothers derived from a class of generalized cost functions. Computational
Geosciences, 25(3), 1159-1189.



Application of #]-GIES: Case study 1

Adopting fg-GIES algorithms
T

1
L(m%|d°,mP,y) = > (d° — g(m?)) cz1(d° — g(m?)) + yR[®(m*) — ®(mD))]

with R consisting of 5 individual terms with the €5 or £ metric

2R[®(m*) — d(mP)] = wy||B;(m?® — mP)|13 + w,||TV (m®) — TV(mP?)|1% + ws||TV (m®) — TV(m?)||
+ Wy |[IEpise (m®) — 1Epise(MP) |3 + ws||IEpise (M*) — IEp;5(mP) |2

BB, = (5,,SL)~1, and in effect, B; all equal to identity matrices for i = 2,3,4,5
TV: operator computing the first-order total variation (TV) of a reservoir model

IE},;s+: operator computing the information entropy (IE) of the histogram of a reservoir model



Application of fg-GIES: Case study 1 NR CE

2R[@(m?%) — d(mP)] = wy||B1(m* — mP)||3 + w,||TV (M) — TV(mP)||3 + ws||TV (m%) — TV(mP)||?
+ Wy ||[IEnise (M®) — 1Epise(MP) 13 + ws||IEpise (m®) — IEpise(mP)13

Whenw;=1, w; = 0,i = 2,3,4,5, recovering the original IES

5-bit binary encoding system (e e,eseqec), e; € {0,1},i = 1,2,3,4,5, used to refer the resulting fg-GIES
algorithms. If w; = 0, e; = 0; otherwise, e; = 1. Example: the original IES encoded as 10000

This leads to 31 fg-GIES algorithms in total for performance comparison, excluding the one with the code 00000 (no
regularization)

Data mismatch during the forecast period as the performance measure



Constrained GIES (C-GIES) for data assimilation N ------------ R CE
with soft constraints (DASC)

Inequality constraint system with barrier Equality constraint system with channel
function (pushing away from the boundary) function (attracting towards the boundary)
Din (x) = - (log (x +2))" Lien(x). Deq (x) = (log (|x] + b)) Lien(x);
V’Dm }{ = —lien(xj-,/(x + El)i VDeq x = lien{x]»/ (x 1+ bx sgn (}{)) :

Vo, [x] = diag ((1“"”("]'/ (e + a))nz) ' V5, [x] = - diag ((lie-nl[x)-/ (x + bx sgn (x)))ﬂ) :



