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Motivation

• The transport of information from one observation time to the next

is important for an optimal data assimilation system

• To what extent the numerical discretization of the model 

influences the forecast uncertainty ?



Transport of passive tracer 
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V passive tracer, e.g. mass mixing ratio of an air constituent q

Eulerian coordinates

Lagrangian coordinates  

Let     represent the position of fluid particles at t=0, and moving with the flow 
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The flow      is given by the winds Vt
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Conservative properties in Lagrangian coordinates 
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Assuming that the flow is known (i.e. deterministic) makes the advection

a linear problem.

Consider an ensemble of Ne initial 

Tracer values for each fluid particles
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The ensemble mean is conserved,
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covariance between a pair particles 

is also conserved,

in fact the full pdf , p , is conserved in the Lagrangian coordinates.  A nice 

property it we were to apply it to particle filters.

( ) ( ) ,)0,(,)0,(cov),(,),(cov 2121 XqXqtXqtXq =

( ) ( ))0,(,,)0,(),(,,),( 11 nn XqXqptXqtXqp  qq =

1X
2X

●

●

●
●



Model 

Evolution of covariance function

PDE solution of error variance

Discretize and forecast

the error variance

Model 

Discretize

Forecast error covariance matrix

Forecast error variance



Same numerical model to evolve V and calculate  Pii

• After 8 day of transport
evolving V (Lagrangian solution)

contours are for

each 1%

contours are for

each 10-20 %



Consider 1D advection uniform wind. Donor cell upstream or semi-lagrangian

where is the Courant number.   
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Time stepping of the error covariance                                               is done by

in two steps 

1) updating with respect to the x1 coordinate
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2) updating with respect to the x2 coordinate 
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Remark: In matrix form, the result of step 1 and 2 is equivalent to   Tnn
MMPP =+1

Specifically for the 1D advection transport scheme above
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Combining those two equations and writing the result for  i = j (the same point)

i.e. the error variance 
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Whereas from the Lagrangian description, the error variance should simply 

be advected
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The difference, equation (2) minus equation (1), is 

a net loss of error variance
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To recover the variance predicted by a Lagrangian description, the error variance

obtained from an Eulerian model need to be increased by the deficit (3), i.e.
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This is an explicit form for inflation.  

here we can see that inflation (correction) also depends on

the courant number and the correlation length 



Advection by a non-uniform (stationary) wind

Initial correlation : SOAR with Lc = 400 km



Standard predictability Lagrangian (i.e. characteristics)

or  T T
XX MPM



Using local covariance coordinates



Using local covariance coordinates

Propagation in local coordinates
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Propagation in spatial coordinates
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Standard predictability

+ inflation of variance
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Lagrangian (i.e. characteristics)or  T T
XX MPM



Standard predictability

+ stochastic inflation of state
Lagrangian (i.e. characteristics)or  T T

XX MPM
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3D CTM  - Solid body rotation winds

Initial error correlation Error correlation after 4 days

Variance loss:  solid body rotation winds,  ERA interim meteorology



B/A : Ratio of  the EnKF error variance with the advection of error variance

• The variance loss depends on the ratio of r = correlation length / model resolution

• Differences with small sample size (Nens = 20) is due to sampling errors

r ~ 6

r ~ 3

r ~ 1

3D CTM  - ERA Interim meteorology



In which circumstances the variance loss is the largest ? 

Over a region with dense observations

standard predictability

Case: uniform constant winds

translation of 

variance

initial 

variance



And if we use inflation (due to numerical discretization error)

with inflation

Case: uniform constant winds

translation of 

variance

initial 

variance

advection of variance



Conclusions

• In addition to the variance loss we observe in ensemble DA, there

exist a new loss of variance due to the model discretization error 

that appears in both KF and ensemble DA

• The variance loss depends on the way we obtain the error covariance,

e.g. standard, local coordinate, Lagrangian

• We derived an inflation based on the variance loss of a first order

discretization (either to rescale the variance or as a stochastic term)

• The variance loss is largest when the correlation length is smallest,

e.g. over a densely observed region (with spatially uncorrelated obs errors)



Thanks for your attention





standard KF

KF with variance correction

Motivation

• When using different numerical schemes the model error variance t

can differ by a factor 2 (with a modestly dense observations)

• Analysis error variance can also be different by a factor 2

Ménard et al 2000 MWR, Ménard and Chang 2000 MWR


