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Motivation

« The transport of information from one observation time to the next
IS Iimportant for an optimal data assimilation system

« To what extent the numerical discretization of the model
influences the forecast uncertainty ?



Transport of passive tracer
Eulerian coordinates (X,t)

a—q+V-Vq:O

p» J passive tracer, e.g. mass mixing ratio of an air constituent

Lagrangian coordinates
Let X represent the position of fluid particles at t=0, and moving with the flow

X(t; X) = @,(X)
The flow @, is given by the winds V
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Conservative properties in Lagrangian coordinates
Dq .
ot 0 mm)  q(x(t; X),t) = q(X,0)

Assuming that the flow is known (i.e. deterministic) makes the advection
a linear problem.

Consider an ensemble of N, initial
Tracer values for each fluid particles

{q(X,0]i=1...,N,}
The ensemble mean is conserved,

qx(t; X),t) = (X0 X ez
covariance between a pair particles X,
IS also conserved,
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cov(q(X,,1), (X, t) )=cov(q(X,,0), q(X,.0)),

in fact the full pdf , p, is conserved in the Lagrangian coordinates. A nice
property it we were to apply it to particle filters.

p,(a(X.,t), ..., a(X,.1))= p,(a(X,,0), ..., 4(X,,0))




Model Model

Discretize Evolution of covariance function
Forecast error covariance matrix PDE solution of error variance
Forecast error variance Discretize and forecast

the error variance



Same numerical model to evolve V and calculate P;;
After 8 day of transport

evolving V (Lagrangian solution)
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Consider 1D advection uniform wind. Donor cell upstream or semi-lagrangian

Qin+1 =(1-a) qin + aqin—l
where g =u At/ Ax is the Courant number.

Time stepping of the error covarianceP”( X, (1), X, () ): < g’ q; > IS done by
In two steps
1) updating with respect to the x, coordinate

P™(x.(i),x,(j))= transport of P"(x,,X,) with respectto x,
2) updating with respect to the x, coordinate
P"™(x.(i), X, (j))= transport of P"(x,,x,) with respectto x,

Remark: In matrix form, the result of step 1 and 2 is equivalentto P"* = MP"M’

Specifically for the 1D advection transport scheme above
P*(X1(i)’xz(j)): P" (Xl(i)’xz(j)) T+ { P" (Xl(i _1)’X2(j))_Pn (Xl(i)’xz(j))}
P (%,(1). %,(1))= P" (%), %,(})) + a{ P" (x,(i), x,(j —1)) = P" (% (i), %,(})) }




Combining those two equations and writing the result for 1 =j (the same point)
I.e. the error variance

P™ (%)%, () 2RI = 1-a)’ B + a(a )P, ;+ a(a =D R, + a’R% (1)

Whereas from the Lagrangian description, the error variance should simply
be advected

V™= L-a)V,"+ aV, (2)

The difference, equation (2) minus equation (1), is

—a(a - 1){ -RiL-RLi+ Piil,i—l} 3)
a net loss of error variance

To recover the variance predicted by a Lagrangian description, the error variance
obtained from an Eulerian model need to be increased by the deficit (3), i.e.

a(o - 1){ Pia— Pl +Pn1|1}

This is an explicit form for inflation.
here we can see that inflation (correction) also depends on
the courant number and the correlation length




Advection by a non-uniform (stationary) wind
Initial correlation : SOAR with Lc =400 km

Winds
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Standard predictability Lagrangian (i.e. characteristics)
XX" or MPM'
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Using local covariance coordinates
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Propagation in spatial coordinates
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Using local covariance coordinates
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Standard predictability XX or MPM' Lagrangian (i.e. characteristics)
+ inflation of variance

a(a _1){Pun - Pi,ni—l - Piﬂl,i T Pil,i—l}
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Standard predictability XX or MPM' Lagrangian (i.e. characteristics)
+ stochastic inflation of state

(q, -q,) U, for o >0
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3D CTM - Solid body rotation winds

Initial error correlation Error correlation after 4 days

rrelations at 50 hPa on 20080601 Correlations at 50 hPa on 20080605
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3D CTM - ERA Interim meteorology

B/A : Ratio of the EnKF error variance with the advection of error variance
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« The variance loss depends on the ratio of r = correlation length / model resolution

« Differences with small sample size (Nens = 20) is due to sampling errors



In which circumstances the variance loss is the largest ?
Over a region with dense observations

Case: uniform cogstant winds mm)
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And if we use inflation (due to numerical discretization error)

Case: uniform constant winds
Wlth mflatlon
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Conclusions

In addition to the variance loss we observe in ensemble DA, there
exist a new loss of variance due to the model discretization error
that appears in both KF and ensemble DA

The variance loss depends on the way we obtain the error covariance,
e.g. standard, local coordinate, Lagrangian

We derived an inflation based on the variance loss of a first order
discretization (either to rescale the variance or as a stochastic term)

The variance loss is largest when the correlation length is smallest,
e.g. over a densely observed region (with spatially uncorrelated obs errors)



Thanks for your attention
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Motivation

« When using different numerical schemes the model error variance t
can differ by a factor 2 (with a modestly dense observations)
« Analysis error variance can also be different by a factor 2
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