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Problem description and motivation



Problem description

Consider the state-space model with additive Gaussian noise
uny1 = V(up) Markov chain } I
Yn+1 = Hupy1 + Ynt1 observation o

with non-linear ¥ : R? x Q — R, linear H € R™*9 and

iid .
A &~ N(O, F) with {’)/j} iR {Uj}

on filtered probability space (€2, {Ft}¢>0, F,P).

Objective: For a given fixed observation Y, := (y1, ..., ¥n),
approximate u,|Y, weakly by an efficient EnKF method.

Dynamics constraint: W needs to be sampled by numerical
methods, e.g., from an SDE

1 1
V(un) = un + / a(Unys)ds + / b(unss)dWsy p,
0 0 3/25



Ensemble Kalman filtering (EnKF)

Notation: P ensemble size, N discretization parameter for V.
Prediction: Given ensemble 7, ,, ... Vnp with 0, ~ P, 1y,
approximate P, . |y, by the empirical measure of

N
Vatt,i = WV(vii).

i,

2

1.5-

0.5 -

o Pulvy 7~

Update: Assimilate observation y,;1 into v,1; by

Vpy1,i = (I = Knp1H)Vota,i + Knp1 (Va1 + Ynta,i)-

P
P ~ NP l § :5A
Unt1|ytner ™ 'un+1 T P Vot1,i”
k=1 4/25



Cost of EnKF

For a quantity of interest (Qol) ¢ : R? — R, at each time n,
EnKF estimator:

Blpunl Yol ~ [ o)) = ¥l
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Cost of EnKF

For a quantity of interest (Qol) ¢ : R? — R, at each time n,
EnKF estimator:

Blpunl Yol ~ [ o)) = ¥l

Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)]

Under sufficient regulatory assumptions, for any p > 2 and n > 0 we
achieve

lien L] = 12>l p () = OC(e)

at the compuational cost bounded by

Cost(u)"Fp]) = P x Cost(WN(v)) = O(e73).
— ——
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Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)]

Under sufficient regulatory assumptions, for any p > 2 and n > 0 we
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lien L] = 12>l p () = OC(e)
at the compuational cost bounded by
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Cost of EnKF

For a quantity of interest (Qol) ¢ : R? — R, at each time n,
EnKF estimator:

Blpunl Yol ~ [ o)) = ¥l

Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)]

Under sufficient regulatory assumptions, for any p > 2 and n > 0 we
achieve

lien L] = 12>l p () = OC(e)

at the compuational cost bounded by

Cost(u"F[¢]) = P x Cost(WN(v)) = O(e73).
—_——
~N
e Question: Can we improve the cost rate of EnKF?
e Answer: Yes, by Multilevel EnKF (MLEnKF).
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Multilevel EnKF ideas

MLEnKF (Original, 2016):
L

Ny, P, KME No_1,P.K,
E[o(un)| Yol & ph o] =) (un" o5 — pin' " "Niwi

(=0
for Ny =~ 2¢, P, exponentially decreasing and
ML ML
(unr Pl e POy 0 ] coupled through using the same

Kalman gain and driving noise.
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Multilevel EnKF ideas

MLEnKF (Original, 2016):

L
Efi(un)| Yol & o] 1= 3 (rn 715" = i PR s
(=0
for Ny = 2¢, P, exponentially decreasing and
(MQ’[’PZ’K'ML - Mryifl’PbK"ML)[VJ? wy] coupled through using the same
Kalman gain and driving noise.

MLEnKF (New, 2020):
Elp(un)| Ya] & pM 0]

Ll 8 NPkl Mo Pokt~?
— Zm Z(an, 2,"n 7‘unz71, 2,%n )[%w&m]

for Ny < 26 P, = 2¢, Mg exponentially decreasing and
(,u,’Y“PZ’K — e 1Pk )[go we.m] pairwise-coupled samples of

EnKF estimators at different resolution levels. 6/25



New Multilevel EnKF (MLEnKF)



Multilevel sample estimators

Introduce a hierarchy of numerical solvers {\lle}?‘;O with
N, = 2°.
Note that

[\IINL ] ZE[\UNZ —wNe())] ) (with WN-1() = 0),

Gives rise to the multilevel Monte Carlo estimator (Giles
2008),

[\UNL } ZEPZ whe(y) — whei(y)],

and . ..the MLEnKF estimator (H.Hoel et.al., 2016)

L
Ny 1,P
o] == (uhePe — pn' )l
(=0
7/25



An alternative MLEnKF method

New MLEnKF approach is based on a sample average of independent and
pairwise-coupled samples of EnKF estimators at different resolution
levels.

m Pairwise coupling of particles. Set Py = 2P, ;.

Z 5338338

m For £ > 1, denote an updated ensemble at time n coupled to the

two coarser-level updated ensembles as follows

A0—1,1 .
coupling {Vn,i if 16{1,....P¢,1}7

Ol
A2 e (Pt P,

n,i

Vin,i—Po_4

m Impose the particle-wise shared initial condition:

» {o(f;l*l if ie{l,...,Pr1}

Vo.i =\ ae—1,2 e
Vi P, if 1€{Pi_1+1,...,P}.

8/25



New MLEnKF

Prediction step

m Simulate for i = 1,..., Py on hierarchy levels  =0,1,...,L

Ly I(Az 1

V4
n+11_w ( nnwfl) n+1: WKI)

m Compute sample covariances of the ensembles as follows

‘ oy A 0—1,1 _ . A1 £-1,2
Coy1 = Cov[Var1p], G = COV[Vn+1,1 Po_1 l G COV[Vn+1 Pg_q+1: P(]

9/25



New MLEnKF

Prediction step
m Simulate for i = 1,..., Py on hierarchy levels  =0,1,...,L
Viony = WO ), VL = W (0w ).
m Compute sample covariances of the ensembles as follows

£ . £ 0—1,1 _ ~—r £—1 £—1,2
Cn+1:COV[Vn+1,1:Pg] Cost’ *COV[Vn+1,1 Pl,w] Coit’ COV[Vn+1 Py_1+ lP(]

Update step
m Compute the respective Kalman gains by formula®

¢ ¢ £—1,1 £—1,2 1
Kny1 = K(Vn+1,1:P@)7 Kot K(Vn+1 1:P, 1) Kopi™ = K(Vn+1,Pk,1 " 1:Pk)'

m For hierarchy levels £ = 0,1, ..., L, update the particles
Jhv1i = Yot + Vorsi 1= 1L oy 1P
0r€+1i:(I_K£+1H)Vrl;+ll+K+l)/n+ln i=1,.., P,
et == Ky " H)WVE  + Ko e i=1,.., P,
Af+11,2 - (I - e 11’2H)V,€+11,i+Pe 1 Kfﬂl 2}75+1 i+Py_1> =1,.., Pe_1.

'K(x) = Cov[x]HT (HCov[x]HT +T)~! 9/25



New MLEnKF estimator

m Pairwise coupling of EnKF estimators. Correspondingly,
define the fine-level EnKF estimator coupled to the two
coarse-level EnKF estimators by

Py ~l Ne_1,Pe_1,1 P, W(Gflfll)

MNAPZ[SO] o Ef: (P(Vn,i) coupling an Lt [gp] o E ,,2/11 Pz - 7
n o= Ng_1,P¢—1,2 . Py 90(‘7,,7 s )
= po T e = 30 e
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New MLEnKF estimator

m Pairwise coupling of EnKF estimators. Correspondingly,
define the fine-level EnKF estimator coupled to the two
coarse-level EnKF estimators by

Py ~l Ne_1,Pe_1,1 P, W(Gflfll)

MNAPZ[SO] o Ef: (P(Vn,i) coupling an Lt [gp] o E ,,2/11 Pz - 7
n o= Ng_1,P¢—1,2 . Py 90(‘7,,7 s )
= po T e = 30 e

m Introduce a decreasing sequence {M};_, C N with M,
representing the number of i.i.d. and pairwise-coupled EnKF
estimators and define the new MLEnKF estimator as

,/yg,Pe,m . (MnNe—l,Pé—hl,m + Mf’}’e—17Pe—1,27m)/2) ]

MLNEW _ — (M
Mn [90]_22 M(

/=0 m=1

10/25



Visual description of couplings

Prediction

with the same driving noise
{coarse fine }
Ny ¢ Ne¢ ¢
v, -,(u,-) ' (<,w-
2

n—1

Ne-1,Pe1,1
Hn

Update Update

d copies

New1 Pea 1M,
Ne-1,Pe-1,1,1 Ne-1,Pe-1,1,2 1
.uNlJ’ul Hn NePe2  Hn P #:: Pe1,2,M
R A A e-1,P-1,2,M
e, 2 Ne-1,Pe1.22
n Ho i

sum over all levels

e i)

MLENKF estimator
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Convergence of new MLEnKF

Theorem. (MLEnKF convergence)

Under sufficient regularity, for € > 0, there exists an L(¢) > 0 and
triplet of sequences {P;}, {N;}, {M} such that

MLNEW

= Lol = =[]l = O(e),

is achieved at cost

Cost (ﬂf\,/ILNEW) = 0(e7?)

I Compare with the original MLEnKF, where cost is

Cost (113’ M]) = Olog(e)|~"¢ ).

12/25



Numerical example

Stochastic dynamics in a double-well

n+1 n+11
i = V()= [ Vide+ [ S )

with the potential function and observations given by

Ynt1 = Unt1 + 0.1N(0,1)

15

1.0

0.5

u(t)

0.0

-0.5

-1.0

00 25 50 75 10.0 125 15.0 17.5 20.0
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Convergence rates

107t 10° 10! 102
Runtime [sec]
Figure 1: Runtime vs root-MSE for the Qol ¢(x) = x. Original
MLENnKF (solid-asterisked), new MLEnKF (solid-crossed) and EnKF
(solid-bulleted).
Observation:

1S

5™ ] = 127 [l 2() S Runtime™

"] — oo lelll ) S Runtime /3,

1/2
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Summary on new MLEnKF

Main motivations to develop the new MLEnKF:

m In many settings, the (theoretical) convergence results in the
new MLENnKF is better than those obtained in the original
MLEnKF.
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Summary on new MLEnKF

Main motivations to develop the new MLEnKF:

m In many settings, the (theoretical) convergence results in the
new MLENnKF is better than those obtained in the original
MLEnKF.

m The approach is closer to classic EnKF — easier to
implement for practioners.

m |t can be extended to a multi-index EnKF method.

15/25



Multi-index EnKF (MIEnKF)




A brief overview of Multi-index EnKF

m Introduce a multi-index £ := ({1, 03) € N%.
m Define the four-coupled EnKF estimator using the first-order

mixed difference:

Ny ,P Ng, ,P Ny, _1,P,
Dplle] = Da(Arpn 2 [0]) = Dopn V2 — pn

Ng,,Pe Ne;sPey—1,1 Ngy,Pey—1,2
:<Hn1 2_<Hn1 2 o )/2

Ng, _1,P, Ng, _1,Pp,_1,1 Ng, —1,Poy_1,2
—,unﬁl SLCI (Mnﬁl 1,Pey—1, _'_,unzl 1,Pey-1, )/2> [¢]

)]
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A brief overview of Multi-index EnKF

m Introduce a multi-index £ := ({1, 03) € Ng.
m Define the four-coupled EnKF estimator using the first-order

mixed difference:

Ny ,P Ng, ,P Ny, _1,P,
Dplle] = Da(Arpn 2 [0]) = Dopn V2 — pn

Ne, ,Pe Ne;sPey—1,1 Ngy,Pey—1,2
:<Hn1 2_<Hn1 2 o )/2

Ng, _1,P, Ng, _1,Pp,_1,1 Ng, —1,Poy_1,2
—,unﬁl SLCI (anl 1,Pey—1, -l—,unﬁl 1,Pey-1, )/2> [¢]

)]

m Introduce a shorter notation as follows

f—esr,1 L—er,2 1.1 £—-172
M b _|_ M 3 - M 9 + M b
Aptfe] == (uﬁ— — i +2> [¢],

with shorthands e; := (1,0), e := (0,1), and 1 := (1,1).
16 /25



MIEnKF estimator

m For a properly selected index set Z, the MIEnKF estimator is
defined by

Auﬁm[w]
el = Z :
£el m=1
where {Auf;’m[go]}f\:il are i.i.d. copies of Apf[y], and
{Auf,’m[go]}(&m) are mutually independent.

m Note that multi-index here refers to a two-index method,
consisting of a hierarchy of EnKF estimators that are
coupled in two degrees of freedom: time discretization Ny,
and ensemble size Py,.

m Sampling four-coupled EnKF estimators may lead to a
stronger variance reduction than that achieved by
pairwise-coupling in MLEnKF.

17/25



MIEnKF algorithm

Prediction step

m Given the four-coupled (V£ ., 0¢-€1, ¢4 €2, Aefl) updated

n i n, i n,i n I
states for i = 1,..., Py,, the prediction states are given by
V3 Ney ol o— Ny —1,~0—
Vinit,i =V, 1(Vn/) Vn+1F:,1' =V, ( E1)7
L—e ol—e £—1 Ney—1,50—1
vn+1,? = ( 2) Vn+1 i = \U b vnl )7

m Compute sample covariances of the following ensembles
s e ) L—e; _
G = COV[VnH,l:P@]» C COV[ n+l 1. Py, I,

L—ey,l __ ~ __r L—eo £L—ep,2 =
G = COV[Vn+1,1.P/2 1]’ G = Cov[v"+1 Pe,—1+ 1»P12],
-1, _ = -1 £—1,2
Ch = COV[VnJrLLP,2 ]] G = COV[ +1 Py, 1+1P(2]
Update step

m The respective Kalman gains are
£ £—e L—e
Kn+1 = K(Vn+1,1:sz)a Kn+1 t= K(Vn+1j:sz)7

KZ ey, —K( L—ey ) K[ e),2 —K VZ*GQ
1 )

n+1 n+1,l Py, n+1 ( n+1,Pp, _1+1:Py, )v

e—1,1 _ 2—1 £—1,2
Ko _K(Vn+1,l Py, 1) Kot K(Vn+1 Py, 1¢1P;2)

18/25



MIEnKF algorithm

Update step

m The perturbed observations are also particle-wise coupled, so
that the updated particle states are:
)7rl;+1,i = Ynt1 + nﬁ—l-l,iv
Of—f—l,i = (I - Kf+1H)Vf+1,i + Kf+1)7£+1,ia

AK—El _ E—el Z—el K—E1 ~f
Vi1 = (I — Ky H)Vn+1,; + Kni1 Ynta,io

for i=1,..., Pry, {n%1 113 are iid. with 52, ~ N(O,T),

n+1,i
~l—er,l L—ej,1 L—e; l—ep,1 ~p N
Vot1,i = (I = K1 H)Vn+1,i + Kor1 Ynyi,io
~b—er2 £—e,2 £—e; L—e,2 ~f
Vorii = (I - n+1 H)Vn+1,i+P52_1 + Kot1 Yn+1,i+Py, 17
Al-11 -1, -1 £-1,1 ¢
Vot1,i = (I - n+1 H)Vn+1,,' + K1 Yn+1,i>
A0-12 0-12, 1\ £-1 £-12 ¢
Vg1, = (I T Tl H)Vn+1,i+P[2,1 + Kn+1 yn+1,i+P5271’ )

fori=1,...,Pp_1. 19/25



Prediction

with the same driving noise

Hi gl

pi12 )

> over all te T

MIEnKF estimator 20 / 25



MIEnKF complexity

Assumption

For Ny, =~ 2, Py, = 2% Ve € N3 and ¢ : RY — R, the four-coupled
EnKF estimator Ap[y] satisfies:

[E[Autlel]| S NP,
VIAtlell S N 2P2
Cost(Ap[e]) = Ne, Py, .

Theorem 1 (MIEnKF complexity)

Under sufficient regulatory assumptions, for any ¢ > 0 and n > 0, the
index set T = {£ € N3 | {1 + €, < L}, with L ~ [loge™! + loglog e 1]
and My ~ 5‘2N23/2P[23/2 ensures that

E [ (el - > le))’] = 0(e),

Cost(pn' [7]) = O(e7?).

21/25



Numerical example

m Again consider nonlinear dynamics with a double well potential

1073 4

RMSE

104 4

107 10° 10! 102 10°
Runtime [sec]

Figure 2: Runtime vs root-MSE for the Qol ¢(x) = x. MIEnKF

(solid-asterisked), new MLEnKF (solid-crossed) and EnKF (solid-bulleted).
22/25



Comparison of computational costs

Methods | EnKF | New MLEnKF | MIEnKF

MSE O(€?) O(€?) O(€2)
Cost O(e73) | O(e2 |Iog(e)\3) O(e2)

Table 1: Comparison of computational costs versus errors for EnKF,
original MLEnKF, new MLEnKF and MIEnKF methods

23/25
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Conclusion

m Presented different ideas of combining multilevel and multi-index
Monte Carlo with EnKF to produce new filtering methods that
display efficiency gains over standard single-level EnKF.
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Conclusion

m Presented different ideas of combining multilevel and multi-index
Monte Carlo with EnKF to produce new filtering methods that
display efficiency gains over standard single-level EnKF.

m A new multi-level EnKF method is based on a sample average of
independent samples of pairwise-coupled EnKF estimators.

m Multi-index EnKF method is based on independent samples of
four-coupled EnKF estimators on a multi-index hierarchy of
resolution levels.

m Under certain assumptions, the MIEnKF method is proven to be
more tractable than EnKF and MLEnKF, and this is also verified
numerically.

m We believe that MIEnKF will often outperform alternative methods
prominently when more than two degrees of freedom need to be
discretized.

24 /25
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Figure 3: Double Well problem. Estimates based on S = 10°
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EnKF convergence

Assumption 1.
For all p > 2,

WYl o@rey S 1+ VI e(o, e
WY (u) = W) oo rey S U = Vle(o,re),

there exists o > 0 s.t. if

[Efp(u) —o(vM)][ SN = [E[p(¥(v)) - oW (V)] S N7°

Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)]

If Assumption 1 holds and wup|Yp € N,;>2L" (2, RY), then for any
v €F, ||MIIY’P[‘P] - /’L%O7OO[S0]‘|LP(Q) < P12 4 N~

e In order to achieve O(¢) accuracy P ~ ¢ 2 and N e,
e Then the cost of EnKF is bounded by Cost(uh F[¢])~ e~ (2+1/2),

25 /25



Original MLEnKF — the pairwise coupling

Prediction step
m Simulate pairwise coupled particles

4 Nyp_q1(al—1
n—‘r}l v 1( n: ’wfl) ,€+1,—\U ( nnwﬁ,i)a

fori=1,..., Py on hierarchy levels £ =0,1,..., L.

s MLMC approximation of prediction covariance:

CML
Coyl = ZCOVPe[ +1] COVPE[Vn—l-l

Update step
Foré=01€ Land/—12 , Py,

: /
yn+ll yn+1+7n+1l7 Ll ’YnJrliNN(O? r)
AE 1 ML ML ~/¢
n+1 i = (I K 1H) n+1 i Kn+1yn+1 i

Al ML
n+11_(/ K 1H) n+1l+Kn+1yn+1l7

where K15 = CYSHT(HCY S HT +1) 72 .



Original MLEnKF accuracy vs. cost

Theorem. [H.Hoel et al., 2016]

If, in addition to Assumption 1 for EnKF, there exists a 5 > 0 such that
for all p>2 and v € N,>,L7(Q, RY),

[0 (v) = WM (V) 1) S (L4 1V i) )N 2.

Then, for any ug| Yo € Nyenl" (), ¢ € F and € > 0, there exists an
L(e) > 0 and {P,}5_, such that

lun () — 1)l S e

And o .
(llog(e)” ") 72, if 8>1,
Cost (un™(¢)) < < (log(e)|' "€)~2|log(e)]®, if B=1,
(log(e)* ")~ (+%%),  if p<1.

I Compare with EnKF, where Cost (u)"F(p)) = (23], /
25 /25



Assumptions for new MLEnKF

Assumption 2.

Let |r]y == 3% | ki for any x € Ng. For all £ € No U {o0} and
p=2,

(i) for all |k|1 <1,

(i) for all |k =2,

(iii) for all |k|; <1,

"W ()

ey S A+ Nl ).

oW (u) S (4 llull 2o 0rey)s

L2P(Q,RY)

2

8E\UN£+1(U) _ aKZWNZ(u) S (1 =+ ||U||Lp Q,Rd )NZ_B/
LP(Q,RY) ( )

25 /25



Convergence of new MLEnKF

Theorem. (MLEnKF convergence)

If Assumptions 1 and 2 hold, then for any ug| Yy € N,enL’ (), ¢ € TF,
n>0, p>2ande>0, there exists an L(e) > 0 and triplet of
sequences {Py}, {Ny}, {M;} such that

Cost (,ul,YILNEW> <

~

6_2

e ?|log(e)[?
—(1+1/a)

—(2+(1-B)/a)

NEW
13 0] — u>le] |l S e

if6>1a>1,
if(B>1l,a=1)or(B=1a>1),

if (B>1,a<l)or (B<1la<p),
if 6<1,a>p0.

with the configuration P, = 2¢, N, =~ 25¢ for any s > 0.

I Compare with old MLEnKF, where cost is

(llog(e)|*"e) 2, if 5>1,

Cost (up “[¢]) <

(llog(e)l'~"e) 2 llog(e)*, if B =1,

(llog(e) ")~ (+5%),  if p<1. 25 /25



Choosing the index set 7

m WeassumeI:{BeN% | 61+ 0> < L}.

The optimal index set I

o
(4]
(4]
>

Figure 4: lllustration of multi-index set Z.

m The problem of optimizing the set Z may be recast as a
knapsack optimization problem.

25 /25



DMFEnKF algorithm

e The initial updated density g, = py|y,, the number of time steps N,
the number of spatial steps N,, the discretization interval [xg, x1], the
simulation length .

e The prediction and updated density, py, and pg , respectively.
At = 5, Ax = A5%,

For n=1: N/
Compute the prediction density pg,(x) = S'p, | by a numerical
method (e.g., Crank-Nicolson) with the discretization steps
(At, Ax).

Compute the prediction covariance

Co = [ x*py,(x)dx — ([ xpg,(x)dx)? using a quadrature rule.
Compute the Kalman gain K, = C,,HT(H(_:,,HT +1)1
Compute the updated density p, = px * py by discrete convolution

of the two functions represented on the spatial mesh.

end 25 /25



Bayes filter vs MFEnKF

Illustration of contracting property: given nonlinear W defined by the
SDE du = —(u + 7w cos(mwu/5)/5)dt + odW and having different update
densities at time n, we have almost identical prediction densities at time
n+ 1 for both Bayes filter and MFEnKF.

|, Bayes Filter

1.2 2 1.2
® Y1
! pun\yn ! pun+1 |Yn 1 pun,+1 ‘Yn+l
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
02 0.2 0.2
0 0 0
2 0 2 2 0 2 2 0 2
Mean-field
1.2 1.2 12
® Ynt1
1 AN 1 v 1 2N
Un Unt1 p'U,,H
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4

0.2
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