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INVERSE PROBLEM

Ø Inverse Problem

𝑦 = 𝒢 𝜃 + 𝜂 𝜂~𝒩(0, Σ!)

Ø Optimization approach

Ø Bayesian (probabilistic) approach

Φ 𝜃; 𝑦 =
1
2
∥ Σ!

"#$ (𝑦 − 𝒢 𝜃 ∥$

Φ%(𝜃; 𝑦) = Φ 𝜃; 𝑦 +
1
2
∥ Σ&

"#$( 𝜃 − 𝑟&) ∥$

𝜇 𝑑𝜃 ∝ exp −Φ 𝜃; 𝑦 𝜇& 𝑑𝜃



KALMAN INVERSION

Ø Kalman filtering (real time 𝑛)

evolution: 𝑥'(# = ℱ 𝑥' + 𝜔'(# 𝜔'(#~𝒩 0, Σ)
observation: 𝑦'(# = 𝒢 𝑥'(# + 𝜈'(# 𝜈'(#~𝒩(0, Σ*)

Ø Kalman inversion (artificial time 𝑛)

evolu.on: 𝜃'(# = 𝑟 + 𝛼 𝜃' − 𝑟 + 𝜔'(# 𝜔'(#~𝒩 0, Σ)
observation: 𝑦'(# = 𝒢 𝜃'(# + 𝜈'(# 𝜈'(#~𝒩(0, Σ*)

linear “identity” dynamics

repeated observation 𝑦'(# = 𝑦

free parameters 𝛼 ∈ 0,1 , 𝑟, Σ), Σ*



Ø Kalman inversion

Prediction: 𝜃' 𝑌' → 𝜃'(# 𝑌' ~𝒩( C𝑚'(#, E𝐶'(#)

C𝑚'(# = 𝑟 + 𝛼 𝑚' − 𝑟 E𝐶'(# = 𝛼$𝐶' + Σ)

Let denote 𝑌' = {𝑦#, 𝑦$, ⋯ 𝑦'} and approximate 𝜃'|𝑌' ~𝒩(𝑚', 𝐶')

Hope that conditional distribution of 𝜃'|𝑌' → 𝜇(𝑑𝜃)

Ø Prediction analysis procedure

GAUSSIAN APRROXIMATION ALGORITHM



Ø Prediction analysis procedure

Analysis: 𝜃'(# 𝑌' → {𝜃'(#, 𝑦'(# 𝑌' → 𝜃'(# 𝑌'(#~𝒩(𝑚'(#, 𝐶'(#)

{𝜃'(#, 𝑦'(#} | 𝑌' ~ C𝑚'(#
K𝑦'(#

,
E𝐶'(# E𝐶'(#

+,

E𝐶'(#
+,! E𝐶'(#

,,

K𝑦'(# = 𝔼 𝒢 𝜃'(# 𝑌'

E𝐶'(#
+, = Cov[𝜃'(#, 𝒢 𝜃'(# |𝑌']

E𝐶'(#
,, = Cov 𝒢 𝜃'(# 𝑌' + Σ*

𝑚'(# = C𝑚'(# + E𝐶'(#
+, ( E𝐶'(#

,, )"# 𝑦'(# − K𝑦'(#

𝐶'(# = E𝐶'(# − E𝐶'(#
+, ( E𝐶'(#

,, )"# E𝐶'(#
+,!

GAUSSIAN APRROXIMATION ALGORITHM



Ø Kalman inversion

We may write the algorithm as

(𝑚'(#, 𝐶'(#) = 𝐹(𝑚', 𝐶' ; 𝒢, 𝑟, Σ))

Consider any invertible affine mapping 𝑥∗ = 𝐴𝑥 + 𝑏, and define

𝑚'
∗ = 𝐴𝑚' + 𝑏 𝑟∗ = 𝐴𝑟 + 𝑏

𝒢∗ 𝜃 = 𝒢 𝐴"# 𝜃 − 𝑏 Σ)∗ = 𝐴Σ)𝐴. 𝐶'∗ = 𝐴𝐶'𝐴.

The algorithm is invariant and satisfies

(𝑚'(#
∗ , 𝐶'(#∗ ) = 𝐹(𝑚'

∗ , 𝐶'∗; 𝒢∗, 𝑟∗, Σ)∗ )

Proposition (Affine invariance)

GAUSSIAN APRROXIMATION ALGORITHM



KALMAN FILTERS

Ø Extended Kalman filter (linearization)

Ø Ensemble Kalman filter (Monte Carlo sampling)

𝒢 𝜃'(# ≈ 𝒢 C𝑚'(# + 𝑑𝒢 C𝑚'(# (𝜃'(# − C𝑚'(#)

K𝑦'(# = 𝒢 C𝑚'(#

E𝐶'(#
+, = E𝐶'(#𝑑𝒢( C𝑚'(#)/

E𝐶'(#
,, = 𝑑𝒢 C𝑚'(# E𝐶'(#𝑑𝒢( C𝑚'(#)/ + Σ*

K𝑦'(# =
1
𝐽
W
01#

2

𝑦'(#
0 𝑦'(#

0 = 𝒢( E𝜃'(#
0 )

E𝐶'(#
+, =

1
𝐽 − 1

W
01#

2

( E𝜃'(#
0 − C𝑚'(#)(𝑦'(#

0 − K𝑦'(#)/

E𝐶'(#
,, =

1
𝐽 − 1W

01#

2

(𝑦'(#
0 − K𝑦'(#)(𝑦'(#

0 − K𝑦'(#)/ + Σ*



Let denote Gaussian random variable 𝜃~𝒩(𝑚, 𝐶) ∈ 𝑅3", 2𝑁+ + 1 sigma
points are chosen deterministically

𝜃& = 𝑚 𝜃0 = 𝑚 + 𝑐0[ 𝐶 ]0 𝜃0 = 𝑚 − 𝑐0[ 𝐶 ]0 (1 ≤ 𝑗 ≤ 𝑁+)

where [ 𝐶 ]0 is the 𝑗th column of the Cholesky factor of 𝐶. The

approximations are

𝔼[𝒢4(𝜃)] ≈ 𝒢4(𝜃& )

Cov[𝒢# 𝜃 , 𝒢$(𝜃)] ≈ W
01#

$3"

𝑊05(𝒢# 𝜃0 − 𝔼[𝒢#(𝜃)])(𝒢$ 𝜃0 − 𝔼[𝒢$(𝜃)])/

𝑐0 = 𝑁+ + 𝜆 𝑊05 =
#

3"(6
𝜆 = 𝑎$𝑁+ − 𝑁+ 𝑎 = min 7

3"(8
, 1

Ø Unscented Kalman filter (quadrature rule)

Definition (Modified unscented transform)

KALMAN FILTERS



Ø Numerical demonstration

𝜃~ 10
10 , 1 0

0 1 𝒢(𝜃) =
1 + 𝜃(#)$ + 𝜃($)$

exp
+ #
$
+ 𝜃($)

;

KALMAN FILTERS



Assume that Σ) ≻ 0. Assume further that 𝛼 ∈ 0, 1 or 𝛼 = 1 and 𝐺 has
empty null-space, the steady state equation

𝐶<"# = 𝐺/Σ*"#𝐺 + (𝛼$𝐶< + Σ))"#

has a unique solution 𝐶< ≻ 0.
The pair (𝑚' , 𝐶') converges exponentially fast to (𝑚< , 𝐶<).
Furthermore 𝑚< is the minimizer of the Tikhonov regularized least
squares function given by

Φ%(𝜃; 𝑦) =
1
2
∥ Σ*

"#$ (𝑦 − 𝐺𝜃) ∥$ +
1 − 𝛼
2

∥ E𝐶<
"#$( 𝜃 − 𝑟) ∥$

where
E𝐶< = 𝛼$𝐶< + Σ)

Ø Linear setting (𝒢 𝜃 = 𝐺 & 𝜃)

Theorem (Exponential convergence)

UNSCENTED KALMAN INVERSION



Let assume the posterior covariance 𝐶∗ = (𝐺/Σ!"#𝐺)"# exists. If we
choose

𝑟 = 𝑟& Σ* = 2Σ! Σ) = (2 − 𝛼$)𝐶∗
Then we have

𝐶< = 𝐶∗
And the Tikhonov regularized least squares function becomes

Φ%(𝜃; 𝑦) =
1
4
∥ Σ!

"#$ 𝐺(𝜃 − 𝐺"#(𝑦)) ∥$ +
1 − 𝛼
4

∥ Σ!
"#$ 𝐺(𝜃 − 𝑟&) ∥$

Ø Linear setting (𝒢 𝜃 = 𝐺 & 𝜃)

UNSCENTED KALMAN INVERSION



When the problem is over/well determined (𝒢 has empty null-space)

𝑟 = 𝑟& Σ* = 2Σ! Σ) = (2 − 𝛼$)𝐶'
When the problem is ill-posed

𝑟 = 𝑟& Σ* = 2Σ! Σ) = (2 − 𝛼$)𝐶&
𝛼 is the regularization parameter

Ø Linear setting (𝒢 𝜃 = 𝐺 & 𝜃)

UNSCENTED KALMAN INVERSION



Ø Nonlinear Setting

Proposition (ExKI Levenberg-Marquardt Connection)

For the nonlinear least squares problem

Φ 𝜃; 𝑦 =
1
2
∥ Σ*

"#$ (𝑦 − 𝒢 𝜃 ∥$

The Levenberg-Marquardt algorithm solves it as

(𝑑𝒢(𝜃')/Σ*"#𝑑𝒢 𝜃' + 𝜆'𝐼)𝛿𝜃' = 𝑑𝒢(𝜃')/Σ*"# (𝑦 − 𝒢 𝜃' )

The extended Kalman inversion solves it as

(𝑑𝒢 𝜃')/Σ*"#𝑑𝒢 𝜃' + 𝐶' + Σ) "# 𝛿𝜃' = 𝑑𝒢(𝜃')/Σ*"# 𝑦 − 𝒢 𝜃'

UNSCENTED KALMAN INVERSION



Ø Nonlinear Setting

Proposition (Averaging property)

Let denote Gaussian random variable 𝜃~𝒩 𝑚, 𝐶 ∈ 𝑅3" . For any

nonlinear function 𝒢, we define the averaged function ℱ𝒢 and averaged

gradient ℱ𝑑𝒢 at 𝑚 as follows

ℱ𝒢 𝑚, 𝐶 = 𝔼[𝒢 (𝜃)] ℱ𝑑𝒢 𝑚, 𝐶 =
𝜕ℱ=𝒢 𝑚, 𝐶

𝜕𝑚
Then we have

ℱ𝑑𝒢 𝑚, 𝐶 = Cov[𝒢 𝜃 , 𝜃] j 𝐶"#

UNSCENTED KALMAN INVERSION



Ø Numerical demonstration

𝑑𝑥#
𝑑𝑡

= 𝜎 𝑥$ − 𝑥#
𝑑𝑥$
𝑑𝑡

= 𝑥# 𝑟 − 𝑥; − 𝑥$
𝑑𝑥;
𝑑𝑡

= 𝑥#𝑥$ − 𝛽𝑥;

𝑦 = 𝒢 𝑟 + 𝜂 𝒢 𝑟 =
1
20
n
;&

>&
𝑥; 𝑡 𝑑𝑡 ( 𝜎 = 10 𝛽 =

8
3 )

Gradient-based adjoint method UKF
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Ø Numerical demonstration

UNSCENTED KALMAN INVERSION

𝑑𝑥#
𝑑𝑡

= 𝜎 𝑥$ − 𝑥#
𝑑𝑥$
𝑑𝑡

= 𝑥# 𝑟 − 𝑥; − 𝑥$
𝑑𝑥;
𝑑𝑡

= 𝑥#𝑥$ − 𝛽𝑥;

𝑦 = 𝒢 𝑟 + 𝜂 𝒢 𝑟 =
1
20
n
;&

>&
𝑥; 𝑡 𝑑𝑡 ( 𝜎 = 10 𝛽 =

8
3 )

Gradient-based adjoint method UKF



Assume 𝒢 is bijection and satisfies the Lipschitz property

det
𝑑𝒢"# 𝜃#

𝑑𝜃 − det
𝑑𝒢"# 𝜃$

𝑑𝜃 ≤ 𝑐& ∥ 𝜃# − 𝜃$ ∥5#

and other regularization assumptions. We have error bounds

∥ 𝑚 −𝑚< ∥<= 𝒪(𝜌(Σ!)5# det Σ!)

∥ 𝐶 − 𝐶< ∥<= 𝒪(𝜌(Σ!)5# det Σ!)

Here 𝑚 and 𝐶 are posterior mean and covariance with an improper

uniform prior, and 𝑚< and 𝐶< are converged mean and covariance.

Theorem (Posterior approximation)

Ø Nonlinear setting

UNSCENTED KALMAN INVERSION



Ø Numerical demonstration

?
?@

𝑒+ # ?
?@
𝑝 𝑥 = 1 𝑥 ∈ 0,1 𝑝 0 = 1 and 𝑝 1 = 𝜃 $

𝑦 = 𝒢 𝜃 + 𝜂 𝒢 𝜃 = 𝑝 0.25; 𝜃
𝑝(0.75; 𝜃)

UKI approximation with 𝐽 = 5 at iteration 5, 10, and 15

UNSCENTED KALMAN INVERSION



Ø Numerical demonstration

Affined invariant Markov chain Monte Carlo
and sequential Monte-Carlo with 𝐽 = 100

UNSCENTED KALMAN INVERSION



INITIAL CONDITION RECOVERY

Ø Barotropic vorticity equation on the surface of the Earth

𝜕𝜔
𝜕𝑡

= −𝑣 j ∇(𝜔 + 𝑓)

∇$𝜓 = 𝜔 𝑣 = 𝑘×∇𝜓

where 𝜔 and 𝜓 are (absolute) vorticity and streamfunction,

𝑣 is the no-divergent flow velocity, 𝑘 is the unit vector in the

radial direction and 𝑓 is the Coriolis force.



Ø Initial condition (superposition of 𝑢! and 𝜔")

𝑢A = 25 cos 𝜙 − 30cos; 𝜙 +
300 sin$ 𝜙 cosB 𝜙

𝜔C =
8×10">

2
cos 𝜙 𝑒"(

D"#>°
7>° )% cos(4𝜆)

where 𝜙 and 𝜆 are latitude and longitude.

𝜔C

𝜔A

𝜔& = 𝜔A+ 𝜔C

INITIAL CONDITION RECOVERY



Ø Observation

𝑦EAF = 𝑦GHI + 5%𝑦GHI⨀𝒩(0, 𝐼)

50 random pointwise measurements in the north
hemisphere at t = 12ℎ and t = 24ℎ

INITIAL CONDITION RECOVERY



Ø Unscented Kalman inversion

- Ill-posedness (no observation at the southern hemisphere)
Regularization: 𝑟 = 𝜔A and 𝛼 = 0.5

- 𝑁+ = 𝒪(10>)
Low-rank approximation: constrain in the subspace spanned by the
first 𝑁G = 63 spectral modes

INITIAL CONDITION RECOVERY



Ø General circulation model (GCM)

𝜕𝜌
𝜕𝑡
+ ∇ 𝜌𝑣 +

𝜕𝜌𝑤
𝜕𝑧

= 0
𝐷𝑣
𝐷𝑡

+ Ω𝑘×𝑣 +
∇𝑝
𝜌
+ ∇Φ = 𝐹

𝐷𝑇
𝐷𝑡 −

𝑅𝑇𝑤
𝐶,𝑝

= 𝑄

𝜕𝑝
𝜕𝑧

= −𝜌𝑔
𝑝 = 𝜌𝑅𝑇

where 𝜌 is the density, 𝑣 and 𝑤 are horizontal and vertical velocities, 𝑇
is the temperature, 𝑝 is the pressure, and Φ is the geopotential, 𝑅 is
the gas constant 𝐶, is the heat capacity at constant pressure, 𝑘 is the
unit vertical vector, 𝑄 is the radiation model source term for
temperature.

LEARNING SUBGRID-SCALE PARAMETERS



Ø Closure Model (Radiation Modal)

𝑄 = −𝑘/ 𝜙, 𝜎 𝑇 − 𝑇HJ 𝜙, 𝑝

𝑘/ = 𝑘K + 𝑘F − 𝑘K max(0,
L"L&
#"L&

) cos7 𝜙

𝑇HJ = max{200K, [315K − ∆𝑇Msin$ 𝜙 − ∆𝜃Nlog(
𝑝
𝑝&
)cos$ 𝜙 ](

𝑝
𝑝&
)8}

𝑘K =
#

7&OPQ
𝑘F =

#
7OPQ

∆𝑇M = 60K ∆𝜃N = 10K

where 𝜙 is the latitude, and 𝜎 is the height coordinate.

LEARNING SUBGRID-SCALE PARAMETERS



Ø Observation

Zonally/temporally averaged temperature of 1000 days

LEARNING SUBGRID-SCALE PARAMETERS



Ø Unscented Kalman inversion

𝐽 = 9

LEARNING SUBGRID-SCALE PARAMETERS



Thank you!

Ø Unscented Kalman inversion is an effective tool for derivative-
free inversion


