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Turbulence Modeling with RANS

I Turbulence is ubiquitous in natural and industrial flows (see examples below).
I RANS (Reynolds Averaged Navier-Stokes) models are still the work-horse

tool in industrial computational fluid dynamics (CFD) applications.
I High-fidelity methods such as LES (large eddy simulation) and DNS (direct

numerical simulations) are still too expensive for practical flows.
I The drawback of RANS: poor performance in flows with separation, mean

pressure gradient, mean flow curvature . . . Need to quantify and reduce
model uncertainty. We use data assimilation methods to achieve this goal.
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Source of Model Uncertainty in RANS Equations

I Incompressible Navier–Stokes equations:

∇ · u = 0

∂u

∂t
+ u · ∇u− ν∇2u +

1

ρ
∇p = 0

I Reynolds Decomposition: ui = Ui + u′i and p = P + p′

I Reynolds-Averaged Navier-Stokes Equations:

∇ ·U = 0

∂U

∂t
+ U · ∇U− ν∇2U +

1

ρ
∇P = ∇ · τ where τij = −u′iu′j

Reynolds stress is the source of model uncertainty in RANS equations.
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Hierarchy of RANS Turbulence Models1

Reynolds stress closure is the source of model uncertainty in RANS equations.
I Eddy viscosity models: compute eddy viscosity νt and use Boussinesq

assumption: dev(τ ) = νt
(
∇U + (∇U)>

)
to obtain τ

I Reynolds stress transport models: solve a transport PDE for the Reynolds
stress tensor τij to close RANS

RANS equations

Eddy viscosity models

 

 
1Xiao and Cinnella. Quantification of model uncertainty in RANS simulations: A review.

Progress in Aerospace Sciences. 108, 1-31, 2019.
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Other models

mixing length mod.
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Reducing RANS Model Uncertainty with Data2

Using EnKF to quantity and reduce RANS model uncertainty:
I With data (e.g., sparse observation of velocities), one can reduce the

uncertainties in the modeled Reynolds stresses.
I This can lead to an improved prediction of velocity fields in unobserved

locations.

2Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in
Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian
approach. J. of Computational Physics, 115-136, 2016.
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Example: Flow Reconstruction in Square Duct - Setup

I Flow in a square duct
I Features in-plane flows driven by normal Reynolds stress imbalance τyy − τzz
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Second Flow Velocities in Square Duct

Prior Posterior
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Ill-Posedness in Turbulent Field Inversion: Challenges

Can we infer Reynolds stresses?

I Not yet, at least not with velocity
data alone.

I The mapping is highly non-unique:
many Reynolds stress τ (x) fields
produce the same velocity U field,
or at least when observed sparsely.

I Can only give the projection τ (x)
informed by the observed in-plane
velocity:

τyy − τzz

Inferred τyy − τzz

Vorticity transport PDE:

Dωx
Dt

= ν∇2ωx + ωx
∂U

∂x
+ ωy

∂U

∂y
+ ωz

∂U

∂z
+
∂2τyz
∂y2

− ∂2τyz
∂z2

− ∂2

∂y∂z
(τyy − τzz)
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Turbulent Field Inversion and Ill-Posedness: Ideas

Need to impose more physical constraints:
I Positive definiteness (realizability) - similar to inferring permeability κ
I Boundary conditions3

I Smoothness
I Representation with better basis (Karhunen–Loève modes): the field is

governed by a transport PDE.4

Alternatively, we can simplify the problem by inferring eddy viscosity field νt and
accepting the Boussinesq assumption dev(τ ) = νt

(
∇U + (∇U)>

)
.

But even inferring νt can be difficult . . .

3Michelén-Ströfer, Zhang, Xiao, Delgosha. Enforcing boundary conditions on physical fields
in Bayesian inversion. Computer Methods in Applied Mechanics and Eng., 367:113097, 2020.

4Wu, Michelén-Ströfer, Xiao. Physics-informed covariance kernel for model-form uncertainty
quantification with application to turbulent flows. Computers & Fluids, 193:104292, 2019.
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Ill-Posedness in Turbulence Field Inversion

Given velocity measurement, find the eddy viscosity field or Reynolds stress field
that give the best agreement with data.
I Such a field inversion problem is essential in shed light in turbulence

modeling
I Eddy viscosity νt is not a physical quantity in general flows; Reynolds stress

field τ is difficult to measure.

I In RANS momentum equation, the
velocity responds to Reynolds
stress, e.g., τxy = νtS

I The velocity U becomes insensitive
to νt when mean strain rate S
is small(channel center).

I Need to regularize EnKF!
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Background: Regularization in Adjoint Methods

Formulation of inversion

xopt = arg min
x

J with J(x) =
∥∥∥x− xf

∥∥∥
2

P−1
+ ‖H[x]− y‖2R−1

Regularization

I For ill-posed problem: introducing a constraint G[x] = 0 into the cost
function (e.g., smoothness, sparsity, prior). See, for example, Dow and
Wang (2011)

I Regularization in adjoint based optimization (e.g., variational data
assimilation) is straightforward: add a regularization (penalty) term G[x] = 0
into the objective function:

J(x) = ‖x− xf‖2P−1 + ‖H[x]− y‖2R−1 + λ‖G[x]‖2Q−1
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Equivalence between Adjoint and Ensemble Methods

J(x) =
∥∥∥x− xf

∥∥∥
2

P−1
+ ‖H[x]− y‖2R−1 + ‖G[x]‖2Q−1

I The update scheme of EnKF is derived by maximizing the a posteriori
probability

I Therefore, this maximization is implicit in the Kalman update scheme.
I Objective: modify the filtering scheme in EnKF to achieve the same

regularization as in adjoint method.

Proposed Regularization in Ensemble Approach (1/2)

Additional Regularization

J(x) = kHF(x) � dk2
R + kx � x0k2

P + kG (x)k2
W

J(x) = kHF(x) � dk2
R + kx � x0k2

P

...

xpost = xprior + K (d � HF(xprior ))

J(x) = kHF(x) � dk2
R + kx � x0k2

P + kG (x)k2
W

...

xpost = xprior + K (d � HF(xprior )) + K2G (xprior )

Detailed derivation in submitted manuscript.

Michelén Ströfer, Carlos (AOE) Regularized EnKF FFMS 2019 7 / 11
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Regularized Ensemble Kalman Filter5 (1/2)

I Can we derive an analysis that is equivalent to the regularization term in
adjoint methods?

J(xj) = ‖xj − xf
j‖2P−1 + ‖H[xj ]− yj‖2R−1+‖G[xj ]‖2Q−1 .

P−1(xa
j − xf

j) + (H′[xa
j ])
>R−1(H[xa

j ]− yj)+G′[xa
j ]
>Q−1G[xa

j ] = 0.

I Assumptions for simplification

H[xa
j ] ≈ H[xf

j ] +H′[xf
j ](x

a
j − xf

j),

H ≡ H′[xa
j ] ≈ H′[xf

j ]

G[xf] ≈ G[xa], G′[xf] ≈ G′[xa]

I Kalman gain matrix: K = PH>(R + HPH>)−1

5Zhang, Michelén-Ströfer, Xiao. Regularized ensemble Kalman methods for inverse
problems. J. Computational Physics, 416, 109517, 2020.
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Regularized Ensemble Kalman Filter (2/2)

I Derived analysis scheme:

xa
j = xf

j − P(I + H>R−1HP)−1 G′>Q−1G︸ ︷︷ ︸
regularization term

+ PH>(R + HPH>)−1(yj − Hxf
j)︸ ︷︷ ︸

Kalman correction

I Re-written to a pre-correction form:

x̃f
j = xf

j + δ , with δ = −PG′>Q−1G

xa
j = x̃f

j + K(yj − Hx̃f
j)

I This is similar to the baseline EnKF
except for the correction (boxed)

Prior Ensemble  
States

Observation 

Forecast  
States

Forward Model

Kalman Correction

Pre-correction

Constrained States

Updated/Analyzed States

Baseline EnKF

Regularization

EnKF:
Present:
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Regularized Ensemble Kalman Filter: Implementation

I Built general constraints into EnKF
I Derived regularization for ensemble

methods equivalent to that in adjoint
methods

I Bridges the gap between regularization
in adjoint- and ensemble-based methods

I Requires only minor algorithmic
modifications

Prior Ensemble  
States

Observation 

Forecast  
States

Forward Model

Kalman Correction

Pre-correction

Constrained States

Updated/Analyzed States

Baseline EnKF

Regularization

EnKF:
Present:

Open-source implementation in Python6. Code: github.com/xiaoh/DAFI
6Michelén-Ströfer, Zhang, Xiao. DAFI: An open-source framework for ensemble-based data

assimilation and field inversion. Comm. Computational Physics, 29, 1583-1622, 2021.
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Test 1: Demonstration on Toy Problem - Setup

I State: ω = [ω1, ω2]
>

I Model (adopted from Wu et al.
2019):

z =

[
exp(−(ω1 + 1)2 − (ω2 + 1)2)
exp(−(ω1 − 1)2 − (ω2 − 1)2)

]

I Observation mapping:
y = Hz, H = [−1.5,−1.0]

I Truth ω = (1.0, 1.0)

I Local minima (circle):

(ω1 + 1)2 + (ω2 + 1)2 = log 1.5

2 0 2
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EnKF inference results depends on the prior initial states.
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Test 1: Demonstration on Toy Problem - Results

Test 1: Equality constraint

heq[ω] = ω1 + ω2 − 2 = 0

G(ω) = heq[ω]
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Test 2: Inequality constraint

hin1[ω] = −ω1 − ω2 + 1 < 0

G(ω) = max
(
0, (hin[ω])2

)
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Test 2: Inferring Diffusivity From Temperature - Setup

I Objective: infer diffusivity field µ[x]
from observations of temperature u

− d

dx

(
µ[x]

du

dx

)
= f [x]

f [x] = 100 sin(2πx/Lx)

u|x=0 = u|x=Lx = 0

I Synthetic truth: only first 3 modes
are nonzero

I Observation data at
x/L = 0.1, 0.2, . . . , 0.9

Karhunen–Loève Modes

Penalty function: G[ω] = ω
Weight matrix: Q−1 = diag

(
1
n ,

2
n ,

3
n , . . . ,

n−1
n , 1

)
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Test 2: Inferring Diffusivity From Temperature - Results

Baseline, 3 modes:

Baseline, 20 modes:

Regularized, 3 modes:

Regularized, 20 modes:
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Test 2: Inferring Diffusivity From Temperature - Error

− d

dx

(
µ[x]

du

dx

)
= f [x]

Inferred Coefficients Error vs. no. of Modes
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Inversion of Eddy Viscosity in Channel Flows: Setup7

I Observation: streamwise velocity U
I Inferred quantity: eddy viscosity νt(x)

7Zhang, Xiao, He. Regularized ensemble Kalman inversion of turbulence quantity fields.
Submitted.



REnKF for
Inverse Problems

H. Xiao
Virginia Tech

Background

Regularized EnKF

Applications

DA for Model
Learning

Conclusion

28/48

Inversion of Eddy Viscosity in Channel Flows: Results

I Smoothness regularization is essential in recovering νt in the channel center
I Baseline EnKF cannot obtain accurate inversion due to the ill-conditioning in

channel center

Baseline EnKF: Regularized EnKF:
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Inferring Laminar-Turbulent Intermittency: Setup

I The intermittency is an indicator of the larminar region and the turbulent
region. (γ = 0: laminar region; γ = 1: turbulent region)

I Parameterization of the intermittency field with sigmod function (transition
from (γ = 0 to γ = 1

I Regularization on the prior value of the transition point
I Regularization on the sparsity of the Chebyshev mode
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Inferring Laminar-Turbulent Intermittency: Results γ

I Regularization leads to smooth intermittency field
I The inferred field is close to the results of Langtry-Menter transition model

Baseline, Level γ = 0.5

Regularize, Level γ = 0.5
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Inferring Laminar-Turbulent Intermittency: Results νt

Regularization leads to better agreements with synthetic truth (Langtry-Menter).

Background is the contour for γ

Baseline, Level νt/ν = 6.7

Regularize, Level νt/ν = 6.7
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Conclusion

I We used observation data to quantify and reduce model uncertainty in
RANS simulations.

I Inferring latent field (νt, τ ) is ill-conditioned and need regularization
I To this end, we proposed a regularized EnKF method to enforce constraints,

with preliminary success in application of turbulence field inversion

Additional:
I Preliminary efforts in combining data assimilation and machine learning.
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From Field Inversion to Model Learning (1/2)

Scenario: Inferring Reynolds stress from velocity
Consider the Reynolds averaged Navier-Stokes equation

U · ∇U− ν∇2U +
1

ρ
∇P = ∇ · τ or concisely, N [u] = ∇ · τ

Assume:
I Reynolds stress field τ (x) is the only known quantity (field)
I Sparse observations velocities are available in the domain (×)

Data assimilation vs. machine learning
Data assimilation and machine learning are asking different questions from the
given observation data.
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From Field Inversion to Model Learning (2/2)

Data Assimilation
I What is the Reynolds stress field
τ (x) that, after feeding to the
physical solver, would give the best
agreement with observed velocity?

N [U] = ∇ · τ (x)

I Specific to this configuration. The
field inferred from this observation
cannot be generalized to different
systems (configurations).

Machine Learning
(from sparse observations)

I What is the closure model
τ = f(U;W ) that give the
Reynolds stress field that in turn
leads to best agreement with
observed velocity?

N [U] = ∇ · τ (U;W )

I Should be universal, at least
generalizable to similar
configurations.
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From Field Inversion to Model Learning8 (3/3)

flow field

closure variable    at 

point ( )

flow field at  point of interest ( )

𝐽 = 𝑦 − 𝐻(𝑊 ) 𝑅
2

observation

operator

Dynamic model

W

8Michelén-Ströfer, Zhang, Xiao. Ensemble gradient for learning turbulence models from
indirect observations, 2021. Submitted. Available at: arxiv: 2104.07811
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Combining Neural Networks and Adjoint for Model Learning9

I Learn neural-network-based turbulence model from observed velocities
I Adjoint based optimization. Gradient w.r.t. ω via chain rule:

∂J

∂w
=
∂J

∂τ

∂τ

∂w

Di↵erentiable learning of turbulence models from indirect observations 3

✓ g

w

T (k, t⌧ ) = 0

Turbulence Model

Neural Network

Backpropagation

⌧
u · ru � ⌫r2u + r·⌧ + rp � s = 0

r · u = 0

J = J(u, p)

Obervation Operator

PDEs

Adjoint Model@J
@w

Jw ⌧ J

@J
@⌧

Figure 1. Schematic of the end-to-end di↵erentiable training framework. The framework
consists of two main components, the turbulence model and the observation operator, each of
which has a forward and backwards (adjoint) model. For any value of the trainable parameters
w the gradient of the objective function J can be obtained by solving these four problems. The
turbulence model consists of a deep neural network representing the closure function using the
integrity basis representation ✓ 7! g and transport equations T (k, t⌧ ) = 0 for the turbulence
quantities. The observation operator consists of solving the RANS equations with the proposed
turbulence model and extracting the quantities of interest that are compared to the observations
in the cost function J .

of these two components has a forward model that propagates inputs to outputs and a
backwards model that provides the derivatives of the outputs with respect to the inputs
or parameters. The gradient of the objective function J with respect to the network’s
trainable parameters w is obtained by combining the derivative information from the
two components through the chain rule as

@J

@w
=

@J

@⌧

@⌧

@w
, (2.1)

where ⌧ is the Reynolds stress tensor predicted by the turbulence model.

2.1. Forward model

For given values of the trainable parameters w, the forward model evaluates the cost
function J , which is the discrepancy between predicted and observed quantities. The
forward evaluation consists of two main components: (i) evaluating the neural network
turbulence model and (ii) mapping the network’s outputs to observation space by first
solving the incompressible RANS equations.

The turbulence model, shown on the left box in figure 1, maps the velocity gradient
field to the Reynolds stress field. The integrity basis representation for a general eddy
viscosity model (Pope 1975) is given as

⌧ = a +
2k

3
I , a = 2k

10X

i=1

g(i)T (i), g(i) = g(i)(✓1, . . . , ✓5), (2.2)

where a is the anisotropic (deviatoric) component of the Reynolds stress, T and ✓ are
the basis tensor functions and scalar invariants of the input tensors, g are the scalar
coe�cient functions to be learned, and I is the second rank identity tensor. The input
tensors are the symmetric and antisymmetric components of the normalised velocity

gradient: S = 1
2 t⌧

⇣
ru + ru>

⌘
and R = 1

2 t⌧

⇣
ru �ru>

⌘
, where t⌧ is the turbulence

9Michelén-Ströfer, Xiao. End-to-end differentiable learning of turbulence models from
indirect observations. Theoretical and Applied Mechanics Letters. arxiv: 2104.04821
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Differential Framework for Model Learning

Learn Reynolds stress from velocity observations: square duct

Di↵erentiable learning of turbulence models from indirect observations 7

(a) (b)

Figure 3. Results of learning a NLEVM, the Shih quadratic model, from full field velocity
measurements in flow through a square duct. The results shown are the two combinations of
coe�cient functions that have an e↵ect on velocity plotted against the scalar invariant ✓1 ⇡ �✓2.

(a)
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(b)

Figure 4. (a): Velocity and Reynolds stress results of learning a NLEVM from full field velocity
measurements in flow through a square duct. The uz and ⌧xz fields are the reflection of uy and
⌧xy along the diagonal. (b): Schematic of flow through a square duct showing the secondary
in-plane velocities (y-z plane). The simulation domain (bottom left quadrant) is highlighted.

using the basis in equation 2.3, can be written as

g1(✓1, ✓2) =
�2/3

1.25 +
p

2✓1 + 0.9
p
�2✓2

, g2(✓1, ✓2) =
7.5

1000 + (
p

2✓1)3
,

g3(✓1, ✓2) =
1.5

1000 + (
p

2✓1)3
, g4(✓1, ✓2) =

�9.5

1000 + (
p

2✓1)3
.

(3.1)

For the flow in a square duct only four combinations of the Reynolds stress components
a↵ect the predicted velocity (Speziale 1982): ⌧xy and ⌧xz in the axial equation and ⌧yz

and (⌧zz � ⌧yy) in the in-plane equation. In this flow the in-plane velocity gradients are
orders of magnitude smaller than the gradients of the axial velocity ux. For these reasons
only two combinations of coe�cient functions can be learned, g(1) and the combination
g(2) �0.5g(3) +0.5g(4), and there is only one independent scalar invariant with ✓1 ⇡ �✓2.

The neural network has two inputs and four outputs and was pre-trained to the LEVM
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Using Ensemble to Compute Gradient

I Fully differential framework is desirable, but adjoint can be expensive to
develop

I Propose using ensemble simulations to compute gradient

∇τJ =
(

(∆τ>∆τ + λI)−1∆τ>
)> (

∆U>R−1 (H(τ)− y)
)

I State representation: τ = τ + β∆τ
I Chain rule to compute gradient: ∇τJ = ∇βJ · ∇τβ
I ∇βJ = ∆U>R−1 (H(τ)− y)
I ∇τβ = (∆τ>∆τ + λI)−1∆τ>
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Ensemble Gradient vs. Adjoint Gradient

I Ensemble method provides a smooth estimation of the sensitivity and give
the same gradient direction as the adjoint method.

I Sensitivity to Cµ with ensemble method has different magnitude, but the
ensemble gradients result in the same sign and same zero as from the
adjoint in the search region near the true value.
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Ensemble Gradient for Learning Eddy Viscosity Model

I Use the observation of velocity to learn the eddy viscosity
I The trained model not only results in the correct velocity but learns the true

underlying model for g1(= −Cµ)
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Outline

1. Background: Ill-Posedness in Turbulence Modeling

2. Regularization of EnKF

3. Application to Turbulence Field Inversion

4. Data Assimilation for Learning Physical Models

5. Conclusion
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Conclusion (again)

I We used observation data to quantify and reduce model uncertainty in
RANS simulations.

I Inferring latent field (νt, τ ) is ill-conditioned and need regularization
I To this end, we proposed a regularized EnKF method to enforce constraints,

with preliminary success in application of turbulence field inversion
I Preliminary efforts in combining data assimilation and machine learning.
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Thank you

Thank you for you attention.
Questions and comments are appreciated!



REnKF for
Inverse Problems

H. Xiao
Virginia Tech

46/48

Projection Method: EnKF with Constraints

I After Kalman filtering, the projection method projects the updated state
onto a constrained surface by solving a constrained optimization problem:

xa = arg min J(xa − x̂f)>P̂−1(xa − x̂f) s. t. Gx̂a = z

I Problem solved with the Lagrange multiplier method:
L = (xa − x̂f)>P̂−1(xa − x̂f) + 2λ>(Gx̂a − z)

I This method imposes a hard constraint
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Projection Method: EnKF with Constraints

I Taking the first order derivatives w.r.t state and the Lagrange multiplier λ to
be zero yields:

∂L

∂xa = P̂−1(xa − x̂f) + G>λ = 0,

∂L

∂λ
= Gx̂a − z = 0

I This leads to
λ = (GP̂G>)−1(Gx̂f − z)

xa = x̂f − P̂G>(GP̂G>)−1(Gx̂f − z)
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Pseudo Observation Method: EnKF with Constraints

I Augment the observation with the constraints:
[
y
z

]
=

[
H
G

]
x +

[
ε
0

]

R̃ =

[
R 0
0 0

]

I Extended to enforce soft constraints by adding noise in the constraint
function and modified the error covariance matrix

I The observation augmentation method is equvalent to projection method
(Simon, 2010)

I No change in Kalman updating, but observation matrix can be large –
expensive for matrix inversion.

I Cannot handle inequality constraints.
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