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Turbulence Modeling with RANS

H. Xiao
Virginia Tech

Background
Regularized EnKF
Applications » Turbulence is ubiquitous in natural and industrial flows (see examples below).

DA for Model » RANS (Reynolds Averaged Navier-Stokes) models are still the work-horse
tool in industrial computational fluid dynamics (CFD) applications.

» High-fidelity methods such as LES (large eddy simulation) and DNS (direct
numerical simulations) are still too expensive for practical flows.

Conclusion

» The drawback of RANS: poor performance in flows with separation, mean
pressure gradient, mean flow curvature ... Need to quantify and reduce
model uncertainty. We use data assimilation methods to achieve this goal.



. Source of Model Uncertainty in RANS Equations

» Incompressible Navier-Stokes equations:

V-u=0
ou

1
— +4u-Vu—vVu+-Vp=0
ot p

» Reynolds Decomposition: u; = U; +uj, and p= P +p/
» Reynolds-Averaged Navier-Stokes Equations:

V-U=0

1
8—U+U-VU—I/V2U+—VP:V'T where 7;; = —ulu
ot P

oL~

Reynolds stress is the source of model uncertainty in RANS equations.

7/48



Hierarchy of RANS Turbulence Models?

Virgiia Tech Reynolds stress closure is the source of model uncertainty in RANS equations.
Background » Eddy viscosity models: compute eddy viscosity v; and use Boussinesq
Regularized EnKF assumption: dev(7) =14 (VU 4 (VU)T) to obtain 7
Applications » Reynolds stress transport models: solve a transport PDE for the Reynolds
fgrioi;;v'odel stress tensor 7;; to close RANS
Conclusion RANS equations

P+ IVp— (V-vV)u=V-7

Eddy viscosity models

= 2u,S E

DE4V-T, =P —¢|

1Xiao and Cinnella. Quantification of model uncertainty in RANS simulations: A review.
Progress in Aerospace Sciences. 108, 1-31, 2019.
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T+ 1iVp—(V-vV)u=|V.7
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D v pea] | [r=N-i()]

|D’°+v Tk_Pk—a| DTV T=P-£+1]

1Xiao and Cinnella. Quantification of model uncertainty in RANS simulations: A review.
Progress in Aerospace Sciences. 108, 1-31, 2019.



Hierarchy of RANS Turbulence Models?

Virgiia Tech Reynolds stress closure is the source of model uncertainty in RANS equations.
Background » Eddy viscosity models: compute eddy viscosity v; and use Boussinesq
Regularized EnKF assumption: dev(7) =14 (VU 4 (VU)T) to obtain 7
Applications » Reynolds stress transport models: solve a transport PDE for the Reynolds
Egrf:i;gﬂodel stress tensor 7;; to close RANS
Conclusion RANS equations

B4+ V- (V-vV)u=|V-r

Eddy viscosity models Reynolds stress Other models
transport models

F+Fa-ovws m=c4| [r=N"T@] T=[(S,Q,- )

Dk — D = mixing length mod.
D_t+V'Tk_Pk_€| D_?+V'T_P_8+H| algebraic models

Xiao and Cinnella. Quantification of model uncertainty in RANS simulations: A review.
Progress in Aerospace Sciences. 108, 1-31, 2019.



Reducing RANS Model Uncertainty with Data?

H. Xiao
Virginia Tech
Background

Regularized EnKF

Applications Using EnKF to quantity and reduce RANS model uncertainty:

DA for Model » With data (e.g., sparse observation of velocities), one can reduce the
uncertainties in the modeled Reynolds stresses.

Conclusion
» This can lead to an improved prediction of velocity fields in unobserved
locations.

2Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in
Reynolds-averaged Navier—Stokes simulations: A data-driven, physics-informed Bayesian
approach. J. of Computational Physics, 115-136, 2016.



REnKF for

~ Example: Flow Reconstruction in Square Duct - Setup

» Flow in a square duct

» Features in-plane flows driven by normal Reynolds stress imbalance 7, — 7.

Qs"@

\|/

In-plane
secondary flow

: : Lines along which secondary
flow velocities are shown later.
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~ Second Flow Velocities in Square Duct

Inverse Problems

—— samples —-=  sample mean —=- baseline
—— DNS (Huser et al. 1993) X X observations
1 1
0.8
0.6
=
=
B
0.4
0.2 !
| 1
7 I
0.0 0.0 | > I
) 0.25 0.5 0.75 T .
0 0.25 0.5 0.75 ]
y/hi  y/h+1/20, y/h;  y/h+1/2U,

Prior Posterior
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lll-Posedness in Turbulent Field Inversion: Challenges

H. Xiao

Virginia Tech Can we infer Reynolds stresses?
Inferred 7, — 7.,
Background H o vy
E » Not yet, at least not with velocity

Regularized EnKF data a/one 1o /h=025 y/h=05 y/h=0.6 y/h=0.75 y/h=10
Applications X i ) X
DA for Model » The mapping is highly non-unique: o
Learning many Reynolds stress 7(x) fields
Conelusion produce the same velocity U field, 06

or at least when observed sparsely. <

. . . 0.4
» Can only give the projection () ! E

. . |

informed by the observed in-plane 02 | ! 1

velocity: i '

Tyy - TZZ 01‘0,1 0.0 0.1 -0.050.00 0.05 —0.050.00 0.05 -0.050.00 0.05 —0.050.00 0.05

Vorticity transport PDE:

Dw, — V% 4w 8—U—i—w a—U—i—w 8£+827yz _82Tyz_ 0?2 (ry — 722)
Dt - x x 8.7? Y ay z 82’ 82/2 822 ayaz yy zZz
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Turbulent Field Inversion and Ill-Posedness: |deas

Need to impose more physical constraints:
» Positive definiteness (realizability) - similar to inferring permeability k
» Boundary conditions3
» Smoothness
> Representation with better basis (Karhunen—Loéve modes): the field is
governed by a transport PDE.#
Alternatively, we can simplify the problem by inferring eddy viscosity field vy and
accepting the Boussinesq assumption dev(7) = 14 (VU + (VU)T).
But even inferring v; can be difficult ...

3Michelén-Strofer, Zhang, Xiao, Delgosha. Enforcing boundary conditions on physical fields
in Bayesian inversion. Computer Methods in Applied Mechanics and Eng., 367:113097, 2020.

*“Wu, Michelén-Strifer, Xiao. Physics-informed covariance kernel for model-form uncertainty
quantification with application to turbulent flows. Computers & Fluids, 193:104292, 2019.
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[[[-Posedness in Turbulence Field Inversion

Given velocity measurement, find the eddy viscosity field or Reynolds stress field
that give the best agreement with data.
» Such a field inversion problem is essential in shed light in turbulence
modeling
» Eddy viscosity 14 is not a physical quantity in general flows; Reynolds stress
field 7 is difficult to measure.

» In RANS momentum equation, the
velocity responds to Reynolds
stress, e.g., Tyy = 1S

» The velocity U becomes insensitive
to vt when mean strain rate S
is small(channel center).

» Need to regularize EnKF!

—.— DNS _—k—w —— inferred v,/v. 0.7|S|H/U,
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Background: Regularization in Adjoint Methods
Formulation of inversion

2
x°Pt = argminJ with J(x) = Hx - XfHP—l + 11X — ylla-

X

Regularization

» For ill-posed problem: introducing a constraint G[x] = 0 into the cost
function (e.g., smoothness, sparsity, prior). See, for example, Dow and
Wang (2011)

» Regularization in adjoint based optimization (e.g., variational data
assimilation) is straightforward: add a regularization (penalty) term G[x] =0
into the objective function:

J() =[x = x 32 + [1H ] = ylig-2 + A GIXI[IG-



REnKF for

. Equivalence between Adjoint and Ensemble Methods

769 =[x =<, + 17 =yl + G013

» The update scheme of EnKF is derived by maximizing the a posteriori
probability

» Therefore, this maximization is implicit in the Kalman update scheme.

» Objective: modify the filtering scheme in EnKF to achieve the same
regularization as in adjoint method.

J(x) = [IHF(x) = dll + lIx = xol[p J(x) = [IHF(x) = dll + lIx = ol + | 6(x)Ily

Xpost = Xprior + K (d — H]:(Xprior)) Xpost = Xprior + K (d — H]:(Xprior)) + Kz G(Xpriar)
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Regularized Ensemble Kalman Filter® (1/2)

» Can we derive an analysis that is equivalent to the regularization term in
adjoint methods?

T5) = I = x§lB-1 + 7] = yilig-a G BTG

P71 —xj) + (H'DS) "RTH(HBS] — ;) +G'b3] Q1G] = 0.

» Assumptions for simplification

» Kalman gain matrix: K=PHT(R+HPHT)!

5Zhang, Michelén-Strofer, Xiao. Regularized ensemble Kalman methods for inverse
problems. J. Computational Physics, 416, 109517, 2020.
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Regularized Ensemble Kalman Filter (2/2)

» Derived analysis scheme:

x@=xt — P(I +H'RIHP)"1 ¢’ QI

regularization term

+PHT(R+HPH") " (y; — Hxf)

Kalman correction

» Re-written to a pre-correction form:

=5 45| withd = —Pg'""Q1¢

x3 =% 4+ K(y; — Hx)

» This is similar to the baseline EnKF
except for the correction (boxed)

Prior Ensemble
States
Baseline EnKF
Forward Model
X/ = MI] [ Regularization
Forecast (", Pre-correction
States x” f=xf 46

Observation Y

Constrained States %/

Kalman Correction

EnKF: x" =x/ +K(y - Hx/)
Present: x* = x/ + K(y — H;v/‘)

@ Updated/Analyzed States x*




Regularized Ensemble Kalman Filter: Implementation

H. Xiao
Virginia Tech

Background Prior Ensemble
States

Regularized EnkF B> Built general constraints into EnKF Sescins Bl

Applications » Derived regularization for ensemble TN | [ TReaaraon

DA for Model . . -

ST L methods equivalent to that in adjoint — Freoeon
States x”\ ¢%s** x/ =xI'+4

Conclusion methOdS - -

> Bridges the gap between regularization
in adjoint- and ensemble-based methods

Observation Y [Constrained States x

Kalman Correction

» Requires only minor algorithmic EakF: X! = x[+ Kly —Hx)

Present: x" = x/ + K(y — Hx/)

modifications
@ Updated/Analyzed States x*

Open-source implementation in Python®. Code: github.com/xiaoh/DAFI

5Michelén-Strofer, Zhang, Xiao. DAFI: An open-source framework for ensemble-based data
assimilation and field inversion. Comm. Computational Physics, 29, 1583-1622, 2021.



REnKF for

~ Test 1. Demonstration on Toy Problem - Setup

> State: w = [wy,ws] "

+ truth —— local minimums ® prior mean
» Model (adopted from Wu et al.
2019): 3
2 2 2
_ exp(—(w1 +1)° — (w2 + 1) )]
exp(—(w; — 1)% — (w2 — 1)?) 1
. . 30
» Observation mapping:
y=Hz, H=[-1.5,-1.0] -
-2
» Truth w = (1.0,1.0) 5
» Local minima (circle): -2 0 2

(Wi +1)? + (we+1)2=1log1.5

EnKF inference results depends on the prior initial states.
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= Test 1: Demonstration on Toy Problem - Results

Test 1: Equality constraint Test 2: Inequality constraint
heqlw] = w1 + w2 —2=10 hinilw] = —w1 —w2 +1<0
G(w) = heq[w] G(w) = max (0, (hin[w])?)

3

2

1

s o
-1

-2

-3




. Test 2: Inferring Diffusivity From Temperature - Setup

» Objective: infer diffusivity field p[z]

from observations of temperature u e P e e
— mode 2 — mode 4
001
d )
- (w1%) = 71
0.01
flz] = 100sin(27z /L) & ow

—=0.01
—0.02
—0.03

» Synthetic truth: only first 3 modes B
are nonzero )

u|x:0 = Uf|z=Lm =0

» Observation data at Karhunen-Loéve Modes
z/L=0.1,0.2,...,0.9

Penalty function: Glw] = w
Weight matrix: Q! = diag (%’ %7 3 .., o=l 1)
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REnKF for
Inverse Problems

Test 2: Inferring Diffusivity From Temperature - Results

Baseline, 3 modes:
1.2

1.1

-
1.0
=

0.9

0.
%.0 0.2 0.4 0.6 0.8 1.0

z/L,
Baseline, 20 modes:
1.2
1.1
29
3

Regularized, 3 modes:

1.2

1.1

=10
=

0.9

08002 01 06 03
/L,

Regularized, 20 modes:
1.2

1.0

1.1

31,0&ﬁ
3

0.9

0.
%.0 0.2 0.4 0.6 0.8
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= Test 2: Inferring Diffusivity From Temperature - Error

dx dx
#— truth ~ *—v priormean ¢ -¢ baseline e—e regulaﬁzed| "—' prior mean +-¢ Dbaseline +— regularized
15 0.07
0.06
*
1.0 oo
05 0.04 '/,\'_'__"_:__,
= .7
5 £ 003 o
0.0 * o
0.01 s 3
—0.5 ol
0.00f
—19 5 10 15 20 —ooig S TR TR R - )
mode i number of modes
Inferred Coefficients Error vs. no. of Modes
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REnKF for

 Inversion of Eddy Viscosity in Channel Flows: Setup’

» Observation: streamwise velocity U

> Inferred quantity: eddy viscosity v¢(x)

Y

“Zhang, Xiao, He. Regularized ensemble Kalman inversion of turbulence quantity fields.
Submitted.
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REnKF for
Inverse Problems

Inversion of Eddy Viscosity in Channel Flows: Results

» Smoothness regularization is essential in recovering vy in the channel center

» Baseline EnKF cannot obtain accurate inversion due to the ill-conditioning in
channel center

—-— DNS == k—-w inferred

Baseline EnKF: Regularized EnKF:

1.0

\~___—

1

!

!

!
= [
<.0.59!
= !
|

\.
N,

N L — ~
0 10
v/v, 0.7|S|H/U,
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Inferring Laminar-Turbulent Intermittency: Setup

H. Xiao
Virginia Tech

» The intermittency is an indicator of the larminar region and the turbulent

Background . . . .
# region. (v = 0: laminar region; v = 1: turbulent region)

Regularized EnKF

PR » Parameterization of the intermittency field with sigmod function (transition
DA for Model from(y=0toy=1

Learning

Conclusion » Regularization on the prior value of the transition point

» Regularization on the sparsity of the Chebyshev mode

0.008

Free stream

0.006

£'0.004

outlet

0.002

wall

symmetry

0.000

0.0 0.5 1.0



REnKF for

. Inferring Laminar-Turbulent Intermittency: Results ~

» Regularization leads to smooth intermittency field
» The inferred field is close to the results of Langtry-Menter transition model

0.008

0.006

£'0.004

0.002

Baseline, Level vy = 0.5 0.009

S
=)
o
St
=
9
S
=)
o
=
—
1=}
S

==+ initial =+ Langtry-Menter inferred 0.008

0.006
Regularize, Level v = 0.5

£'0.004

0.002

0'008.00 025  0.50 0.75 1.00
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REnKF for

~ Inferring Laminar-Turbulent Intermittency: Results v
Regularization leads to better agreements with synthetic truth (Langtry-Menter).
0.020
0.015
£'0.010

Background is the contour for v
0.005

Baseline, Level v4/v = 6.7 0.00

0.020

==+ initial =+ Langtry-Menter inferred

0.015

Regularize, Level v /v = 6.7 20.010

0.005

0.00
8.00 0.25 0.50 0.75 1.00
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Conclusion

> We used observation data to quantify and reduce model uncertainty in
RANS simulations.

» Inferring latent field (v, 7) is ill-conditioned and need regularization

» To this end, we proposed a regularized EnKF method to enforce constraints,
with preliminary success in application of turbulence field inversion

Additional:

» Preliminary efforts in combining data assimilation and machine learning.
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From Field Inversion to Model Learning (1/2)

Scenario: Inferring Reynolds stress from velocity

Consider the Reynolds averaged Navier-Stokes equation
1
U-VU-vV?U+ -VP =V -7 orconcisely, N[u=V-1
p

Assume:
» Reynolds stress field 7(x) is the only known quantity (field)

» Sparse observations velocities are available in the domain (%)
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From Field Inversion to Model Learning (2/2)

Data Assimilation

» What is the Reynolds stress field
7(x) that, after feeding to the
physical solver, would give the best
agreement with observed velocity?

N[U| =V - 7(x)

» Specific to this configuration. The
field inferred from this observation
cannot be generalized to different
systems (configurations).

Machine Learning

(from sparse observations)

>

>

What is the closure model

T = f(U; W) that give the
Reynolds stress field that in turn
leads to best agreement with
observed velocity?

N[U] =V - 7(U; W)

Should be universal, at least
generalizable to similar
configurations.



' From Field Inversion to Model Learning® (3/3)

p ~ , ~,

Dynamic model

flow field u(x)

[u~Vu+%Vp—uV2u=V~r]
A

flow field at point of interest (x)

closure variable 7 at obgervation
point * operator

[ J= lly- HW % ]

/

8Michelén-Stréfer, Zhang, Xiao. Ensemble gradient for learning turbulence models from
indirect observations, 2021. Submitted. Available at: arxiv: 2104.07811
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Combining Neural Networks and Adjoint for Model Learning®

» Learn neural-network-based turbulence model from observed velocities
» Adjoint based optimization. Gradient w.r.t. w via chain rule:

o1 _osor
ow Ot dw

Turbulence Model Obervation Operator

w-Vu—-vViu+V-r+Vp—s=0

T, V-u=0

J = J(u,p)

T(k,t;) = 0

w Neural Network T 7
aJ ) — aJ -~

®Michelén-Strofer, Xiao. End-to-end differentiable learning of turbulence models from
indirect observations. Theoretical and Applied Mechanics Letters. arxiv: 2104.04821




- Differential Framework for Model Learning

Inverse Problems

Learn Reynolds stress from velocity observations: square duct

a (b)
(@) Ug [ Up Uy [Up Tay Tyz (Tyy — T22)
x10% x10% x10* x10*

Initial

f =
= N
//| R
q .
: »
.I .I
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REnKF for

= Using Ensemble to Compute Gradient

» Fully differential framework is desirable, but adjoint can be expensive to
develop

> Propose using ensemble simulations to compute gradient

V. = ((ATTAT + /\I)_lATT)T (AUTR‘1 (H() — y))

P State representation: 7 =7 + SAT

» Chain rule to compute gradient: V,.J =VgJ -V,
> Vs =AUTR(H(r) —y)

> V. 8= (ArTAT+ M) TATT
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Ensemble Gradient vs. Adjoint Gradient

» Ensemble method provides a smooth estimation of the sensitivity and give

the same gradient direction as the adjoint method.

» Sensitivity to C), with ensemble method has different magnitude, but the
ensemble gradients result in the same sign and same zero as from the
adjoint in the search region near the true value.

—e— adjoint  —-- direct ~ —-= precondition ~—— projection

1.0

Gradient

-2.0 4

0.000

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
C

n

Gradient vs. C},



REnKF for

. Ensemble Gradient for Learning Eddy Viscosity Model

» Use the observation of velocity to learn the eddy viscosity
» The trained model not only results in the correct velocity but learns the true
underlying model for g;(= —C},)

—e— truth ---- initial (mean) —-—- final (mean) ~— Iinitial (samples) ~ final (samples)
2.0
1.54 3
<10
0.51 4 =
M oo 0.00 15
a1 g /up

Learned coefficient (—C),) Learned velocity U

a1/a8
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Conclusion (again)

» We used observation data to quantify and reduce model uncertainty in
RANS simulations.

» Inferring latent field (v, 7) is ill-conditioned and need regularization

» To this end, we proposed a regularized EnKF method to enforce constraints,
with preliminary success in application of turbulence field inversion

» Preliminary efforts in combining data assimilation and machine learning.
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Inverse Problems Tha n k you

Thank you for you attention.
Questions and comments are appreciated!
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- Projection Method: EnKF with Constraints
i

> After Kalman filtering, the projection method projects the updated state
@ =argmin J(x* —H TP —xH) s t. G=z2

» Problem solved with the Lagrange multiplier method:
L=(0&-2HTP7 1 —sf) + 20T (G — 2)

» This method imposes a hard constraint

onto a constrained surface by solving a constrained optimization problem:
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- Projection Method: EnKF with Constraints
i

> Taking the first order derivatives w.r.t state and the Lagrange multiplier A to
be zero yields:

» This leads to
A= (GPGT) (G —2)
@ =% —PGT(GPGT)(Gxf - 2)
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Pseudo Observation Method: EnKF with Constraints

H. Xiao
Virginia Tech

> Augment the observation with the constraints:

B =lel=+ 1o
S

» Extended to enforce soft constraints by adding noise in the constraint
function and modified the error covariance matrix

» The observation augmentation method is equvalent to projection method
(Simon, 2010)

» No change in Kalman updating, but observation matrix can be large —
expensive for matrix inversion.

» Cannot handle inequality constraints.
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