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Introduction

» Preclinical studies have shown that interstitial fluid pressure
(IFP) within tumors can be heterogeneous

» In-silico model is built that can mimic this behavior

» Model has been trained to comply with experimental in vitro
results

» By varying parameters of the model spatially the behavior of
preclinical study can be matched

» Can these parameters be tuned by images of the tumor?

» How to use information from images without getting ensemble
collapse



Motivation
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Left from Hansem et al., 2019.[1]. Right from Waldeland et al.,
2021.[2]



Tumor microenvironment — Mass balance
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Qe,0f,a,: volume fraction of
cell, fibroblast and

fluid
Ue,Uf Uy interstitial cell, (ac)e + V- (acuc) =0
fibroblast and (af)e+ V- (arur) =0
fluid velocity (aw)e + V- (apuy) = Q
Q,, Qr: transvascular flux Q=0Q, - Q
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Tumor microenvironment — Momentum balance
&% Tumor cells
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“ matrix
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aCV(PW + APq, + AC) = _Ccuc + Ccf(uf - Uc)
arV(Py + APfy + Ny) = —Crur — Cer(ur — ue)
awVPy = —Cuuy

Py interstitial fluid pressure
AP, , APg,: cell-cell stress, CAF-CAF stress
AV AYTE chemotaxis stress

CerCr Cw.Cer: cell-ECM, fibroblast-ECM, fluid-ECM and
cell-fibroblast interaction coefficients



Summary of model

» Flow from vascular system close to tumor periphery to
lymphatic system outside tumor.

» Interaction coefficients are specified as follows:

rec

CW = lwkwa;% Cc = /cché?7 Cf = Ifkfa,rrf7 Ccf = /chC af

» Four additional equations for transportation of chemical
components

» Chemotaxis drives migration towards lymphatic system

» Fibroblasts much more mobile than cancer cells, but cancer
cells can be attached to fibroblasts

See Waldeland et al., 2021 [2] for more about the model.



Mathematical tumor
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Available images

» Assume information about . is available from images (time,
T, is dimensionless).

T=0 T=1/2
» Update model at T =1/2 and predictto T =1



Unknown parameters

Unknown parameters:
» 2 (initial fibroblast concentration.)
» T, (used for calculating Q, = Tv(ﬁj — P,,) where P} is the
vascular fluid pressure.)
» log(kw) (part of Cw = lwkwal.)
a? and log(kg) varies spatially, T, is set as a constant.

(ac)t+ V- (acuc) =0
(af)t + V- (arur) =0
(aw)t + V- (awuy) = Q
RQ=Q —Q
ac+arf+ay, =1

aw VP, = —(yuy



Data assimilation: ES-MDA

» Using a modified ES-MDA (Emerick & Reynolds, 2013). [4]

» Using (L)ETKF to calculate the update steps (Hunt,
Kostelich, Szunyogh, 2007). [5]

» The ES-MDA is performed with 4 update steps with equal
weights.

» Ensemble size is 100.



Extracting information from the image

» To avoid ensemble collapse the information used from the

image is reduced.
» Heuristic approach:

» Calculate the variance of the forecast of ayz with the initial

ensemble.

» Use the K points with highest variance as data.
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Results with K = 200 points: Selection of measurements
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Initial fibroblast concentration (a?)
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Match to variables and data
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Forecast of . at T =1

From initial mean From final mean True field




Effect of K = 400 versus K = 200
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Summary

Conclusions:

P Possible to estimate parameters from the images using
ES-MDA

» Possible to extract information about tumor
micro-environment

Further work:
» Add birth & death of cells
» Take into account different phenotypes of cells

» Use in treatment planning?
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