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Motivation

Chloropyhll-a (Model)
July 26, 2018

TOPAZ4-ECOSMO forecast

• Unresolved process
• Unknown parameters

Chloropyhll-a (Observation)
July 26, 2018

MODIS Aqua

• Sparse
• Noisy
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Typology of problems and approaches
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Our Objective:

Producing an accurate and reliable emulator
of a numerical model given sparse and noisy

observations
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Specification of the problem

Data
Multidimensional time series yobs

k (1 ≤ k ≤ K) observed from an
underlying dynamical process:

yobs
k = Hk(xk) + ϵobs

k

• Hk is the known observation operator: RNx → Rp

• ϵobs
k is a noise

Underlying dynamical model:
dx
dt = ϕ(x)

Resolvent:

xk+1 = xk +
tk+1∫
tk

ϕ(x)dt,
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Two complementary goals

1. Inferring the ODE using only DA algorithm [Bocquet et al., 2019]:

dx
dt = ϕA(x), ϕA(x) = Ar(x),

where r(x) ∈ RNp is specified and A ∈ RNx×Np is to be determined.

2. Emulation of the resolvent combining DA and ML [Brajard et al., 2019]:

xk+1 = GW(xk) + ϵm
k ,

where GW is a neural network parametrized by W and ϵm
k is a

stochastic noise.

5



Two complementary goals

1. Inferring the ODE using only DA algorithm [Bocquet et al., 2019]:

dx
dt = ϕA(x), ϕA(x) = Ar(x),

where r(x) ∈ RNp is specified and A ∈ RNx×Np is to be determined.
2. Emulation of the resolvent combining DA and ML [Brajard et al., 2019]:

xk+1 = GW(xk) + ϵm
k ,

where GW is a neural network parametrized by W and ϵm
k is a

stochastic noise.

5



First goal: Inferring the ODE using
DA



First goal: ODE representation for the surrogate model

Ordinary differential equations (ODEs) representation of the
surrogate dynamics

dx
dt = ϕA(x), ϕA(x) = Ar(x),

where

• A ∈ RNx×Np is a matrix of coefficients to be determined.
• r(x) is a vector of nonlinear regressors of size Np. For instance,
for one-dimensional spatial systems and up to bilinear order:

r(x) =
[
1, {xn}0≤n<Nx , {xnxm}0≤n≤m<Nx

]
.

Np =
(Nx+1

2
)
= 1

2 (Nx + 1)(Nx + 2).

−→ Intractable in high-dimension! Typically, Nx = O(106−9).
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Reducing the number of regressors

Locality
Physical locality of the physics: all multivariate monomials in the
ODEs have variables xn that belong to a stencil, i.e. a local
arrangement of grid points around a given node.
In 1D and with a stencil of size 2L+ 1, the size of the dense A is

Nx × Na where Na =
2L+2∑
l=L+1

l = 3
2 (L+ 1)(L+ 2).

Homogeneity
Moreover, we can additionally assume translational invariance. In
that case A becomes a vector of size Na.
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Bayesian analysis of the problem

Bayesian view on state and model estimation:

p(A, x0:K|y0:K) =
p(y0:K|x0:K,A)p(x0:K|A)p(A)

p(y0:K)
.

Data assimilation cost function assuming Gaussian error statistics and
Markovian dynamics:

J (A, x0:K) =
1
2

K∑
k=0

∥yk − Hk(xk)∥2R−1
k

+
1
2

K∑
k=1

∥xk − FA(xk−1)∥2Q−1
k

− lnp(x0,A),

where FA is the resolvent of the model between tk and tk +∆t.

−→ Allows to handle partial and noisy observations.

Typical machine learning cost function with Hk = Ik in the limit Rk −→ 0:

J (A) ≈ 1
2

K∑
k=1

∥yk − FA(yk−1)∥2Q−1
k

− lnp(y0,A).
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Experiment setup

δtr

δta

δtf

∆t

t0 tK

t0 tK

T + TfT

y0 yK

generating physical states

learning step

forecast step

yk yk+1

Illustration using a Lorenz 96 model:

• Size of the state Nx = 40
• Integration scheme: 4th order RK (RK4)
• Integration time step: δtr = ∆t = 0.05
• integration length: K = 50
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Case studies

Model scheme time step Observation noise
Identifiable RK4 δta = ∆t = 0.05 0

Non identifiable RK2 δta = 0.05/Nc 0
Identifiable RK4 δta = ∆t = 0.05 σy > 0

Identifiable model:

• The true model ϕ(x) is included in the candidates ϕA(x),
• The integration scheme and the step time used for generating
the observations is the same as the one used for the surrogate
model.
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Case 1: Identifiable model and perfect observations

Comparison of the ODE coefficients
∥Aa − Ar∥∞ ∼ 10−13,
where Ar are the coefficients of the reference equation (truth) and Aa
are the coefficients of the surrogate ODE.

Almost perfect reconstruction to the machine precision.
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Case 2: Non-identifiable model and perfect observations

Surrogate model based on an RK2 scheme, δta = ∆t/Nc.
Analysis of the modelling depth as a function of Nc.
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Case 3: Identifiable model and imperfect observations

ODE coefficients
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Case 3: Identifiable model and imperfect observations

Forecast skill
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Remarks: connections between Data assimilation and machine
learning

Data Assimilation Machine Learning

Dynamical system Residual deep neural network
Parametrized forecasting model Layer of a neural network
Optimization Training
Adjoint modelling Backpropagation
Locality assumption Convolutional layers
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Second goal: Emulating a model
by combining DA and ML



General remarks

What is Data Assimilation good at?
Given a numerical model, some observations and assumptions on
uncertainties:

• Estimate the state of a system in an objective way,
• Estimate the uncertainty of the state.

What is Machine Learning good at?
Given a “good enough” dataset:

• Retrieve some hidden relationships in the dataset.

Idea
Combining both approaches to develop accurate emulator of
numerical models.
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Proposed algorithm

• Observations: yobs
k = Hk(xk) + ϵobs

k

• The neural net: xk+1 = GW(xk) + ϵm
k = xk +

tk+1∫
tk

ϕ(x)dt

Initialization: W

Fix W, Estimation of xa
1:K using yobs

DA step

Fix xa
1:K, Estimation of W

ML step

Cycle

Stop if converged

Training of a neural net

Finite-Size Ensemble Kalman Filter
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Numerical experiment: Lorenz 96 model

A simulation is performed over K = 40, 000 time steps: xref
0:K

yobs
k = Ht(xref

k ) + ϵobs
k ; yobs

t ∈ Rp

• Hk is defined at each time
step by randomly sample
p=20 observations (50% of
the state space).

• ϵobs
k is generated using a
Gaussian law of mean 0 and
standard deviation 1.
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Neural Network setup

xk

Ba
tc
h
No
rm

CN
N 2

a

CN
N 2

b

×

CN
N 2

c

CN
N 3

CN
N 4 + GW (xk)

Layer number of unit filter size number of weights
1 (batchnorm) 2
2 (bilinear) 24× 3 5 144× 3

3 (convolutive) 37 5 8917
4 (linear) 1 1 38

Residual bi-linear convolutive neural network (9391 weights),

compared with Na = 18 in case of ODE parametrization.
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Evaluation

• Interpolating the observations:

Score: RMSE-a (Root-mean square error of the analysis)
• Forecasting skill

Score: RMSE-f (Root-mean square error of the forecast as a
function of leading time)

• Reproducing the long-term dynamics

Score: Lyapunov exponents and PSD (Power Spectral Density)
compared with the true model.

→
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Convergence of the algorithm

21



Convergence of the algorithm
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Interpolation

RMSE (obs)= 1

RMSE-a= 0.8

Method RMSE-a

Lower bound Quadratic interpolation 2.32

DA with surrogate model 0.80

Upper bound DA with true model 0.34
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Forecast skill

• Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

• Upper bound: Neural Net trained with “perfect” observations
(complete, no noise).
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Sensitivity to noise and density of observations

Sensititvity to the density of
observations

RMSE-f(t0 + δt)
observation noise: σobs = 1

Sensititvity to the noise of
observations

RMSE-f(t0 + δt)
density of observations: 50%

24



Reconstruction of the long-term dynamics

Power spectral density

Lyapunov exponents

• Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

• Upper bound: True model
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Power spectral density Lyapunov exponents

• Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

• Upper bound: True model
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Conclusion

Emulate an numerical model given sparse and noisy observations

• Bayesian data assimilation for state and model estimation:
• equivalent to a machine learning approach,
• makes use of locality and homogeneity to reduce the dimension of
the model parameters.

• Combined data assimilation / machine learning:
• emulate the resolvent of the model,
• training of the neural nets are performed on state estimated from
data assimilation.

Properties of the neural net surrogate model

• Interpolation of the observations: denoising of the
observations and interpolation

• Predictability skills: sensitive to model noise, and to
observation density below 50%

• Replication of the long-term dynamics properties
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