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Our Objective:

Producing an accurate and reliable emulator
of a numerical model given sparse and noisy
observations



Specification of the problem

Data

Multidimensional time series y2> (1 < k < K) observed from an
underlying dynamical process:

yzbs _ Hh(xfe) + Ezbs

- Hy is the known observation operator: R"x — RP

- €P" is a noise
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Data

Multidimensional time series y2> (1 < k < K) observed from an
underlying dynamical process:

yzbs _ Hh(xfe) + Ezbs

- Hy is the known observation operator: R"x — RP

- €P" is a noise

Underlying dynamical model:
dx
- = X
=6
Resolvent:
thﬁ

Xp1 = X + / ¢(x)dt,

)



Two complementary goals

1. Inferring the ODE using only DA algorithm [Bocquet et al, 2019]:

dx

i ®a(X), Pa(X) = Ar(x),

where r(x) € R" is specified and A € RV*" is to be determined.



Two complementary goals

1. Inferring the ODE using only DA algorithm [Bocquet et al, 2019]:

dx

i ®a(X), Pa(X) = Ar(x),

where r(x) € R" is specified and A € RV*" is to be determined.
2. Emulation of the resolvent combining DA and ML [Brajard et al, 20191:
Xp+1 = Gw(Xk) + €',

where Gy is a neural network parametrized by W and € is a
stochastic noise.
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First goal: ODE representation for the surrogate model

Ordinary differential equations (ODEs) representation of the
surrogate dynamics

dx
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- A e RN is 3 matrix of coefficients to be determined.

- r(x) is a vector of nonlinear regressors of size N,. For instance,
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First goal: ODE representation for the surrogate model

Ordinary differential equations (ODEs) representation of the
surrogate dynamics

d
T =B, Bax) = Ar(x)
where

- A e RN is 3 matrix of coefficients to be determined.

- r(x) is a vector of nonlinear regressors of size N,. For instance,
for one-dimensional spatial systems and up to bilinear order:

r(x) = [17 {Xn}o<nan, » XnXmto<naman, | -

Np = (NXZH) - %(Nx + 1)(Nx +2).

— Intractable in high-dimension! Typically, Ny = O(106=°).



Reducing the number of regressors

Locality

Physical locality of the physics: all multivariate monomials in the
ODEs have variables x, that belong to a stencil, i.e. a local
arrangement of grid points around a given node.

In 1D and with a stencil of size 2L + 1, the size of the dense A is

2L+2 3
Ny x N, where N, = 121 [=S(L+1D(L+2).



Reducing the number of regressors

Locality

Physical locality of the physics: all multivariate monomials in the
ODEs have variables x, that belong to a stencil, i.e. a local
arrangement of grid points around a given node.

In 1D and with a stencil of size 2L + 1, the size of the dense A is

2L+2 3
Ny x N, where N, = l;H [=S(L+1D(L+2).

Homogeneity
Moreover, we can additionally assume translational invariance. In
that case A becomes a vector of size N,.
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— Allows to handle partial and noisy observations.



Bayesian analysis of the problem

Bayesian view on state and model estimation:

P(Yo:x[Xo:x, A)p(Xo:x|A)p(A)
P(Yo:x) '

P(A, Xox|Yo:x) =

Data assimilation cost function assuming Gaussian error statistics and
Markovian dynamics:

K K
T (A, Xox) = Z [IYe — He(xx HR 1 Z [1Xe — Fa(Xe— HQ—w — Inp(xo,A),
k=0 k=1

where Fa is the resolvent of the model between t, and t, + A:.
— Allows to handle partial and noisy observations.

Typical machine learning cost function with Hr = I in the limit R, — O:

K
zllyk = Fa(Yr—1 ||Q—w — Inp(yo, A).
k=1
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Illustration using a Lorenz 96 model:
- Size of the state N, = 40
- Integration scheme: 4th order RK (RK&)
- Integration time step: 6t, = At = 0.05
- integration length: K =50



Model scheme time step Observation noise
Identifiable RK4 o0ty = At = 0.05 0
Non identifiable RK2 0tg = 0.05/N, 0
Identifiable RK4 0tg = At = 0.05 o, >0

Identifiable model:

- The true model ¢(x) is included in the candidates ¢p(x),

- The integration scheme and the step time used for generating
the observations is the same as the one used for the surrogate
model.



Case 1: Identifiable model and perfect observations

Comparison of the ODE coefficients

HAa - Ar”oo ~ 10_137

where A, are the coefficients of the reference equation (truth) and A,
are the coefficients of the surrogate ODE.

Almost perfect reconstruction to the machine precision.

1



Case 2: Non-identifiable model and perfect observations

Surrogate model based on an RK2 scheme, dt, = At/N..
Analysis of the modelling depth as a function of N..

Average RMSE

2 1 6 8 10 12
Forecast lead time (Lyapunov time unit)

14



Case 3: Identifiable model and imperfect observations

ODE coefficients

1010

1005

1000

10-05

1010

10719

10-20

Gap between the surrogate and reference dynamics

107
— [Aa— A,
10750 lAa = Adll,
279 28 277 26 2% 271 273 272 2-1



Case 3: Identifiable model and imperfect observations

@

Average RMSE

Forecast skill
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Remarks: connections between Data assimilation and machine

learning

Data Assimilation Machine Learning
Dynamical system Residual deep neural network
Parametrized forecasting model Layer of a neural network
Optimization Training
Adjoint modelling Backpropagation
Locality assumption Convolutional layers




Second goal: Emulating a model
by combining DA and ML



General remarks

What is Data Assimilation good at?
Given a numerical model, some observations and assumptions on
uncertainties:

- Estimate the state of a system in an objective way,

- Estimate the uncertainty of the state.

16



General remarks

What is Data Assimilation good at?

Given a numerical model, some observations and assumptions on
uncertainties:

- Estimate the state of a system in an objective way,
- Estimate the uncertainty of the state.

What is Machine Learning good at?
Given a “good enough” dataset:

- Retrieve some hidden relationships in the dataset.

16



General remarks

What is Data Assimilation good at?

Given a numerical model, some observations and assumptions on
uncertainties:

- Estimate the state of a system in an objective way,
- Estimate the uncertainty of the state.

What is Machine Learning good at?
Given a “good enough” dataset:

- Retrieve some hidden relationships in the dataset.

Idea

Combining both approaches to develop accurate emulator of
numerical models.

16
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Proposed algorithm

- Observations: ybs = Hp(Xy) + €™

thi
- The neural net: Xe41 = Gw(Xk) + €5 = Xy +/¢(x) dt

te

Initialization: W

Fix W, Estimation of x&, using y°"s

: ML step < > E

Fix x5, Estimation of W

Stop if converged




Numerical experiment: Lorenz 96 model

A simulation is performed over K = 40,000 time steps: xi¢

y(ébs — Ht(X;;Ef) + G(f?bs; y?bs cRP

Aiti

- Hy is defined at each time

step by randomly sample
p=20 observations (50% of
the state space).

- e is generated using a

Gaussian law of mean 0 and
standard deviation 1.



Neural Network setup

R e

S
g S I S o =
X —4 = % %*} %% Z = Gw (Xg)
= @) (@) (@) © o
T
[an]
T T I

number of unit filter size  number of weights

Layer
1 (batchnorm) 2
2 (bilinear) 24 x 3 5 144 x 3
3 (convolutive) 37 5 8917
4 (linear) 1 1 38

Residual bi-linear convolutive neural network (9391 weights),
19



Neural Network setup

R e
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filter size number of weights

Layer number of unit
1 (batchnorm) 2
2 (bilinear) 24 x 3 5 144 x 3
3 (convolutive) 37 5 8917
4 (linear) 1 1 38
Residual bi-linear convolutive neural network (9391 weights), o

compared with N, = 18 in case of ODE parametrization.



- Interpolating the observations:
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- Interpolating the observations:
Score: RMSE-a (Root-mean square error of the analysis)

- Forecasting skill
Score: RMSE-f (Root-mean square error of the forecast as a
function of leading time)

- Reproducing the long-term dynamics
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- Interpolating the observations:
Score: RMSE-a (Root-mean square error of the analysis)

- Forecasting skill
Score: RMSE-f (Root-mean square error of the forecast as a
function of leading time)

- Reproducing the long-term dynamics
Score: Lyapunov exponents and PSD (Power Spectral Density)
compared with the true model.

125
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Interpolation

Mt

RMSE (obs)=1
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Mt

RMSE (obs)=1

Surrogate

Su-Tr

Mate

RMSE-a= 0.8

Method

RMSE-a

DA with surrogate model 0.80
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Interpolation

Nt Aiti
RMSE (obs)=1 RMSE-a= 0.8
Method RMSE-a
Lower bound Quadratic interpolation 2.32
DA with surrogate model 0.80

Upper bound DA with true model 0.34

22



Forecast skill

RMSE-f (t)

—— surrogate

ol : . : . . .
0 2 4 6 8 10 12 14
leading time t

23



Forecast skill

> _— B —

)
s 3]
Ll
[%2]
Z 7
14 —— surrogate
—— upper bound
—— lower bound
0 T T T T T T T
0 2 4 6 8 10 12 14

leading time t

- Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

- Upper bound: Neural Net trained with “perfect” observations
(complete, no noise).

23



Sensitivity to noise and density of observations

Sensititvity to the density of Sensititvity to the noise of
observations observations

0.8 0.8

0.7 0.7
T 06 < 0.6
w w0
j_" 0.5 Fos
E 0.4 :E 0.4
g 0.3 ‘§ 0.3
o o

0.2 0.2

0.1 0.1

0.0 0.0

30% 40% 50% 60% 70% 80% 90% 100% 0.50 0.75 1.00 1.50 2.00 2.50 4.00
p (obs size in %) gobs
RMSE-f(to + dt) RMSE-f(to + 6t)
observation noise: 6% =1 density of observations: 50%
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Reconstruction of the long-term dynamics

Power spectral density

—— lower bound

—— upper bound
—— surrogate

frequency [Hz]

- Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

- Upper bound: True model

25



Reconstruction of the long-term dynamics

Power spectral density

Lyapunov exponents

—— lower bound
—— upper bound
—— surrogate

0 2 8 10

6
frequency [Hz]

n-th Lyapunov exponent

+ —— lower bound

—+— upper bound
—+— surrogate

0 5 10 15 20 25 30 35 40

- Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

- Upper bound: True model

25



Conclusion

Emulate an numerical model given sparse and noisy observations

- Bayesian data assimilation for state and model estimation:

- equivalent to a machine learning approach,
- makes use of locality and homogeneity to reduce the dimension of
the model parameters.

26



Conclusion

Emulate an numerical model given sparse and noisy observations

- Bayesian data assimilation for state and model estimation:
- equivalent to a machine learning approach,
- makes use of locality and homogeneity to reduce the dimension of
the model parameters.
- Combined data assimilation / machine learning:
- emulate the resolvent of the model,
- training of the neural nets are performed on state estimated from
data assimilation.

26



Conclusion

Emulate an numerical model given sparse and noisy observations

- Bayesian data assimilation for state and model estimation:
- equivalent to a machine learning approach,
- makes use of locality and homogeneity to reduce the dimension of
the model parameters.
- Combined data assimilation / machine learning:

- emulate the resolvent of the model,
- training of the neural nets are performed on state estimated from
data assimilation.

Properties of the neural net surrogate model
- Interpolation of the observations: denoising of the
observations and interpolation

- Predictability skills: sensitive to model noise, and to
observation density below 50%

- Replication of the long-term dynamics properties 26
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