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Seismic survey for hydrocarbon 
reservoir monitoring and management

Source: https://oilnow.gy/

More advanced techniques available
e.g., Ocean Bottom Cable (OBC) or even
Permanent Reservoir Monitoring (PRM) 
system
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SHM involves using (3D or 4D) seismic data to estimate properties of reservoir formations 
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Motivation

Develop a workflow to account for model errors in rock 
physics models (RPM)
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Supervised learning (1/3)
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• We have a set of inputs 𝑋 ≡ {𝑥𝑖}𝑖=1

𝑁𝑠 with 𝑁𝑠
samples; and a corresponding set of noisy

outputs 𝑌 ≡ {𝑦𝑖}𝑖=1
𝑁𝑠

• We want to learn a function ℎ so that          
ℎ 𝑥𝑖 match 𝑦𝑖 to a good extent, 
for 𝑖 = 1, 2,… ,𝑁𝑠



Supervised learning (2/3)

To this end, we solve a functional optimization (known as empirical risk minimization, ERM) 
problem to find the optimal ℎ∗

ℎ∗ = argmin
ℎ

1

𝑁𝑠
∑
𝑖
𝑦𝑖 − ℎ 𝑥𝑖

2
+ 𝛾 𝑅(||ℎ||)

• 𝛾:  regularization parameter
• R:  regularization functional to avoid overfitting, e.g., 𝑅 𝑥 = 𝑥2

• ||ℎ||: functional norm in a certain function space



Supervised learning (3/3)
To solve the ERM problem, in practice, one strategy is to 
adopt a parametric model that can be used to approximate a functional 

Then the ERM problem is converted to a parameter estimation 
problem, i.e.,

ℎ∗ = argmin
ℎ

1

𝑁𝑠
∑
𝑖
𝑦𝑖 − ℎ 𝑥𝑖

2
+ 𝛾 𝑅(||ℎ||)

𝜃∗ = argmin
𝜃

1

𝑁𝑠
∑
𝑖
𝑦𝑖 − ℎ 𝜃; 𝑥𝑖

2
+ 𝛾 𝑅 𝜃 ;

Examples of parametric model for functional approximation: 
generalized linear models
support vector machines (SVM)
(shallow or deep) neural networks   

ℎ 𝜃; 𝑥𝑖 ≈ ℎ 𝑥𝑖

ℎ 𝜃; 𝑥𝑖 ≈ ℎ 𝑥𝑖



Ensemble-based supervised learning 
(1/2)

𝜃∗ = argmin
𝜃

1

𝑁𝑠
∑
𝑖
𝑦𝑖 − ℎ 𝜃; 𝑥𝑖

2
+ 𝛾 𝑅 𝜃

𝜃∗ = argmin
𝜃

𝑌 − 𝐻 𝜃; 𝑋
2
+ 𝛾 𝑅 𝜃

vectorize

Naturally, in light of the developments of ensemble based data assimilation methods, 
instead of estimating a single set 𝜃 of parameters, we can estimate an ensemble  

Θ ≡ {𝜃𝑗}𝑗=1
𝑁𝑒

of such parameters

Similar to a Variational Data 
Assimilation (Var)  problem



Ensemble-based supervised learning 
(2/2)

𝜃∗ = argmin
𝜃

𝑌 − 𝐻 𝜃; 𝑋
2
+ 𝛾 𝑅 𝜃

Θ∗ = argmin
Θ={𝜃𝑗}𝑗=1

𝑁𝑒

1

𝑁𝑒
{ ∑
𝑗

𝑌 − 𝐻 𝜃𝑗; 𝑋
2
+ 𝛾 𝑅 𝜃𝑗 }

ensemblize

We will obtain all the benefits in using
ensemble based methods:
• Adjoint free

• Uncertainty quantification

• Fast implementation

Iterative ensemble smoothers, e.g., Luo et al. 2015*, can be used to solve the ensemble-based 
(supervised) learning problem 

*Luo, X., Stordal, A. S., Lorentzen, R. J., & Naevdal, G. (2015). Iterative Ensemble Smoother as an Approximate Solution to a 
Regularized Minimum-Average-Cost Problem: Theory and Applications. SPE Journal, 20, 962-982.



Kernel method for functional 
approximation

ℎ 𝑥; 𝜃 =

𝑘

𝑐𝑘 𝐾( 𝑥 − 𝑥𝑘
𝑐𝑝

; 𝛽𝑘)

𝜃 = 𝑐1, 𝑐2, … 𝑐𝑁𝑠𝑝; 𝛽1, 𝛽2, … 𝛽𝑁𝑠𝑝
T

for a set of “center points” 𝑥𝑘
𝑐𝑝

(𝑘 = 1, 2,… ,𝑁𝑠𝑝), where

• 𝑐𝑘 and 𝛽𝑘 are parameters associated with the k-th center point

• K is a certain kernel function. Here we use Gaussian kernel

𝐾 𝑥 − 𝑥𝑘
𝑐𝑝

; 𝛽𝑘 = 𝑒−𝛽𝑘
2 𝑥−𝑥𝑘

𝑐𝑝 2
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Problem statement (1/3)

• Problem in consideration:

𝒚𝑜 = 𝒇 𝒙𝑡𝑟 + 𝝐

where

• 𝒚𝑜:  observed output (observation)

• 𝒙𝑡𝑟: underlying true model variables that generate 𝒚𝒐

through the true forward simulator 𝒇

• 𝒇: true (but unknown) forward simulator

• 𝝐: observation noise. 𝝐~𝑵(𝟎, 𝑪𝒅)



Problem statement (2/3)

• In history matching (data assimilation), we may use the 
following forward simulation system 

𝒚𝑠𝑖𝑚 = 𝒈 𝒙

where

• 𝒚𝑠𝑖𝑚:  simulated observation

• 𝒙: model variables to be estimated

• 𝒈: imperfect forward simulator



Problem statement (3/3)

𝒚𝒐= 𝒈 𝒙 + 𝒚𝒐 − 𝒈 𝒙
≈ 𝒈 𝒙 + 𝒓(𝒙, 𝜽)

Kernel methods (or other machine learning models) can be used to 
reparametrize/approximate the residual term*

𝒓 𝒙, 𝜽 ≡ 𝒓(𝒙, 𝜽; 𝒚𝒐, 𝒚𝒄𝒑
𝒐 , 𝒙𝒄𝒑)

so instead of trying to find an optimal functional form for 𝒓, we 
optimize/estimate a set 𝜽 of parameters (as well as 𝒙) instead.

X. Luo, 2019. Ensemble-based kernel learning for a class of data assimilation problems with imperfect forward 
simulators. Available from arXiv:1901.10758



Ensembled-based data assimilation with 
kernel approximation to the residual term

Θ∗ = argmin
Θ={[𝒙𝒋;𝜽𝒋]}𝑗=1

𝑁𝑒

∑
𝑗

𝒚𝒐 − 𝒈 𝒙𝒋 − 𝒓 𝒙𝒋, 𝜽𝒋
𝑇
𝐶𝑑
−1 𝒚𝒐 − 𝒈 𝒙𝒋 − 𝒓 𝒙𝒋, 𝜽𝒋 + 𝛾 𝑅 [𝒙𝒋; 𝜽𝒋]

• This optimization problem can still be solved through an iterative ensemble smoother

• We need to jointly estimate/update 𝒙𝒋 and 𝜽𝒋

• In implementation, it just means that we augment 𝒙𝒋 and 𝜽𝒋 into model variable 

vectors that will be updated
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Synthetic example 1: supervised learning
Blue: Ensemble of predicted functions
Red (dashed): reference function
Green (dashed): biased function

Cyan (solid): Ensemble mean
Red (dashed): reference function
Green (dashed): biased function

Initial ensemble

Final ensemble



Synthetic example 2: data assimilation
Truth Mean of initial ensemble 

Mean of final ensemble 
(no model error correction) 

Mean of final ensemble 
(with model error correction) 



More information and results of both synthetical examples (supervised learning and 
data assimilation) can be found in the preprint

X. Luo, 2019. Ensemble-based kernel learning for a class of data assimilation problems with 
imperfect forward simulators. Available from arXiv:1901.10758



Real field application: 
accounting for rock-physics-

model imperfection in history 
matching seismic data from 

Norne field

In collaboration with my 
colleagues Rolf Lorentzen, 

Tuhin Bhakta



Experimental settings

Types of settings Values/Info

Reservoir model size: 46 x 112 x 22

Seismic data (four surveys) Acoustic impedance on each active gridblock
Total number: 453,376; reduced to 24,232 
through wavelet-based sparse representation*

Production data (1997 - 2006) WOPRH, WGPRH, WWPRH
Total number: 5,038

Model variables to estimate PERM, PORO, NTG etc.
Total number: 148,183

History matching algorithm Iterative ES (Luo et al. 2015) + correlation-based 
adaptive localization (Luo et al. 2018, 2019)

*X Luo, T Bhakta, M Jakobsen, G Nævdal, 2017. An ensemble 4D-seismic history-matching framework with sparse 
representation based on wavelet multiresolution analysis. SPE Journal, 22, 985 - 1,010
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The setting without model error correction (MEC)



Experimental settings

Rock physics 

model
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residual model
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Experimental settings

Kernel-based residual model (inputs/output) at each active gridblock

Input 5: Water Saturation

Input 4: Gas Saturation

Input 3: Pressure 
NTG Pressure

PORO
Gas Saturation

Water Saturation

Output:
Impedance

Input 1: PORO

Input 2: NTG

Total number of kernel 
parameters: 120,000
(with 20,000 center points)



Experimental settings

• Only seismic data are used history matching

• Production data are reserved for cross-validation



Experimental results: data mismatch
Results without MEC Results with MEC

Seismic data mismatch 
(history matching)

Production data mismatch 
(cross validation)



Experimental results: mismatch reduction

Reductions of average production data mismatch with respect to the initial ensemble



Experimental results: forecast

Initial ensemble Final ensemble (no MEC) Final ensemble (with MEC)

Predicted water production rates (WPR) at well D-1H
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Discussion and conclusion

• We show similarities between supervised learning and data 
assimilation; As such, it becomes natural for us to develop an 
ensemble-based framework for supervised learning problems

• With minor modifications, ensemble-based learning can also 
be extended to handle data assimilation problems in the 
presence of model errors

• The integrated data assimilation framework appears to be 
useful for improving DA performance in both synthetical and 
real-world problems presented here  
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