

human energy<sup>®</sup>

### **Ensemble Methods: Challenges Faced In and Lessons Learned From Practical Applications**

### Prepared for 2019 NORCE 14<sup>th</sup> EnKF Workshop

Jincong He (Staff Research Scientist, Chevron ETC)

Acknowledgement: Shusei Tanaka, Xian-Huan Wen, Yanfen Zhang, Yan Chen

### **Outline**

- History matching in oil and gas
- Implementation of ESMDA
- Probabilistic history matching example
- Deterministic history matching example
- Quantifying modeling error



### History matching problem in the oil and gas industry

- Governing equations for subsurface oil and gas flow (mass conservation)  $\frac{\partial}{\partial t} \left( \phi \rho_j S_j \right) - \nabla \cdot \left[ \rho_j \lambda_j \mathbf{k} \left( \nabla p_j - \rho_j g \nabla D \right) \right] + q_j^w = 0$
- Reservoir simulations are driven by uncertainties, not chaotic behaviors
  - State: Pressure (p), saturation (S), ...
  - Observation (d): Production/injection data at the wells  $(q), \ldots$
  - Uncertainties (m): Porosity ( $\phi$ ) and permeability (k) distribution, fluid mobility ( $\lambda$ ), compressibility, geological structure, facies, fluid PVT ... Can be continuous or categorical
- History matching (a.k.a., data assimilation in petroleum engineering):
  - Calibrate the uncertainty parameters (m, usually non-Gaussian) to production history (d, usually nonlinear to m) to reduce uncertainty and improve accuracy in the forecast.





### Probabilistic History Matching vs Deterministic History Matching

- Probabilistic history matching: Prior distribution in, posterior distribution out •
  - Popular methods: Design of experiment + proxy + Monte Carlo, ensemble methods
  - Does ensemble-based method provide reliable estimate of posterior uncertainty?



- Deterministic history matching: One model in, one model out ۲
  - Popular methods: Optimization-based algorithms such as the genetic algorithms and adjoint
  - Can ensemble-based method be used for deterministic history matching?







### **Parameter-Based vs Realization-Based Characterization**

• Characterization of Uncertainties: Parameter-based vs Realization-based

### Parameter-based\*

Variables Description Minimum Maximum SORW OW rel. perm. end point 0.20.11 KRWRO  $\mathbf{2}$ OW rel. perm. end point 0.6 0.93 KROCW OW rel. perm. end point 0.8 1 WEXP OW rel. perm. exponent 4 1 4 5OWEXP OW rel. perm. exponent 1 4 6 3E-06 4E-06 RCOMP Rock compressibility 7WOC Oil-water contact 557555808 PERM1 Layers 1–5 perm. multiplier 0.55PERM2 Layers 6–9 perm. multiplier 0.59 5 10PORO1 Layers 1–5 porosity multiplier 0.61.511 PORO2 Layers 6–9 porosity multiplier 0.851.15

### • Challenge:

- Not all parameters are spatial
- How to incorporate modeling errors in parameterization

\*He, Jincong, et al. "Quantifying expected uncertainty reduction and value of information using ensemble-variance analysis." SPE Journal 23.02 (2018): 428-448 © 2019 Chevron



\*\*Peters, Lies, et al. "Results of the Brugge benchmark study for flooding optimization and history matching." *SPE Reservoir Evaluation & Engineering* 13.03 (2010): 391-405.



### Realization-based characterization\*\*

### **Comparison to Other Ensemble-Based Methods**

- Ensemble Kalman filter (EnKF)
  - Cons: Difficult to implement; Unphysical update (e.g., negative saturation, see Dr. Pfander's talk); Inconsistent with governing equations



- Iterative ensemble smoother •
  - Pros: No need to update states; Use simulator as black box; Consistent with the governing equations

|         | 1  |
|---------|----|
|         |    |
| :       | I. |
| :       |    |
|         | 1  |
|         |    |
| •••••   |    |
|         |    |
| Chevron |    |



### **Ensemble Smoother with Multiple Data Assimilation**

ESMDA formula for uncertain parameter update (Emerick and Reynolds 2013)\*



•  $\alpha$  controls the step size of the update: It satisfies  $\sum_{\alpha} \frac{1}{\alpha} = 1$ 

– Taking a journey in multiple steps to tackle nonlinearity

- It is proven that the final ensemble follows posterior uncertainty when
  - Linear-Gaussian problem with an infinite-sized ensemble
- Possible alternatives: D-ESMDA (Emerick 2018), EnRML (Raanes 2019, Chen and Oliver 2012)





\*Emerick, Alexandre A., and Albert C. Reynolds. "Ensemble smoother with multiple data assimilation." Computers & Geosciences 55 (2013): 3-15.

### Localization

- Kalman gain could suffer from spurious correlations that lead to ensemble collapse •
- Factors that seem to aggravate the ensemble collapse •
  - (1) Small ensemble size, (2) Large number of (redundant) data point, (3) Small degree of freedom
  - (4) Error/tolerance too small, (5) Simulation response inconsistent with the data
- Practical requirement for the location scheme ۲
  - Simple: Minimal user input, minimal information needed
  - Robust: Able to handle different type of uncertainties/data; Adaptive and self-learning
- Recent work ۲
  - Correlation-based adaptive localization (Zhang and Oliver, 2010; Anderson, 2016; Luo et al. 2018)
  - A comprehensive review and comparison (Chen and Oliver, 2016)



### **Bootstrap-Based Localization**

- Ideas: Dampen inconsistent elements in the Kalman as identified by bootstrap sampling •
- Procedures  $\bullet$ 
  - Original Kalman gain:  $K = C_{md}^n (C_{dd}^n + \alpha_n C_e^n)^{-1}$
  - Step 1. Perform bootstrap sampling on the original ensemble to create  $n_h$  bootstrapped ensembles
  - Step 2. For each bootstrapped ensemble calculate the Kalman gain matrix
  - Step 3. Calculate the mean and variance of each Kalman gain elements across all bootstrapped ensembles
  - Step 4. Dampen elements of the original Kalman gain according to level of inconsistency

$$\boldsymbol{K}_{ij}^{s} = \frac{1}{1 + 4\boldsymbol{\sigma}_{K_{ij}}^{2}/\boldsymbol{\overline{K}}_{ij}^{2}}\boldsymbol{K}_{ij}$$

\*Zhang, Y. and Oliver, D. (2010). Improving the ensemble estimate of the Kalman gain by bootstrap sampling, Math Geosci, 42, 327-345.



### **Efficient Calculation of Kalman Gain**

• Bootstrap-based localization requires repeated calculating of Kalman gain

$$\mathbf{K} = \mathbf{C}_{md}^n (\mathbf{C}_{dd}^n + \alpha_n \mathbf{C}_e^n)^{-1}$$

- When the number of data  $(n_d)$  is smaller (e.g.,  $n_d < 500$ )
  - If  $n_d$  is the smallest among  $n_d$ ,  $n_m$  and  $n_r$ 
    - Calculate the inverse directly
  - If  $n_m$  is the smallest among  $n_d$ ,  $n_m$  and  $n_r$ 
    - Solve  $n_m$  linear equations  $(C_{dd}^n + \alpha_n C_e^n)K = C_{md}^n$
  - If  $n_r$  is the smallest among  $n_d$ ,  $n_m$  and  $n_r$ 
    - Solve  $n_r$  linear equations  $(C_{dd}^n + \alpha_n C_e^n)X = D$ , then  $K = \frac{1}{n_r 1}MX$
- When the number of data  $(n_d)$  is large
  - Use the subspace method\*

\*Emerick, A.A., 2016. Analysis of the performance of ensemblebased assimilation of production and seismic data. *Journal of Petroleum Science and Engineering*, *139*, pp.219-239.



### **Subspace Method**

• Need to efficiently evaluate Kalman gain

$$\boldsymbol{K} = \boldsymbol{C}_{MD}^n (\boldsymbol{C}_{DD}^n + \alpha_n \boldsymbol{C}_e^n)^{-1}$$

- Procedure of the subspace method\*
  - Scale the data with error (matrix *S*)
  - Perform SVD on data, only keep significant components ( $D = U_r W_r V_r^T$ )
  - Perform SVD on the error term to diagonalize it (matrix  $H_r$ )
  - Use pseudo inverse instead of actual inverse

$$(\boldsymbol{C}_{DD}^{n} + \alpha_{n} \boldsymbol{C}_{e}^{n})^{-1} \approx (N_{e} - 1) \boldsymbol{S}^{-1} \boldsymbol{U}_{r} \boldsymbol{W}_{r}^{-1} \boldsymbol{Z}_{r} [\boldsymbol{I}_{r} + \boldsymbol{H}_{r}]^{-1} (\boldsymbol{S}^{-1} \boldsymbol{U}_{r} \boldsymbol{W}_{r}^{-1} \boldsymbol{U}_{r} \boldsymbol{W}_{r}^{-1} \boldsymbol{Z}_{r} [\boldsymbol{I}_{r} + \boldsymbol{H}_{r}]^{-1} (\boldsymbol{S}^{-1} \boldsymbol{U}_{r} \boldsymbol{W}_{r}^{-1} \boldsymbol{U}_{r} \boldsymbol{W}_{r}^{-1} \boldsymbol{U}_{r} \boldsymbol{U}_{r} \boldsymbol{W}_{r}^{-1} \boldsymbol{U}_{r} \boldsymbol{$$

- Not necessarily good approximation of the original problem (See Dr. Raanes's talk)
- It is more robust and an enabling method for the bootstrap-based localization

\*Emerick, A.A., 2016. Analysis of the performance of ensemblebased assimilation of production and seismic data. Journal of Petroleum Science and Engineering, 139, pp.219-239.



# $W_r^{-1}Z_r)^T$

### **ESMDA for Probabilistic History Matching**

- ESMDA is proven to sample the posterior correctly in idealized scenarios
- How would the method perform for probabilistic history matching for semi-realistic cases •







### **Example 1. Synthetic Problem with the Brugge Reservoir Model\***

- Uncertainty parameters (92 parameters)
  - Reservoir divided into 30 regions
    - Horizontal permeability multiplier  $(k_h)$
    - Vertical permeability multiplier  $(k_n)$
    - Pore volume multipliers (PV)
  - Two dummy variables



Synthetic Brugge waterflood problem

- Independent of other uncertainties, have no impact on the simulation results \_\_\_\_
- Use to detect ensemble collapse and evaluate uncertainty analysis quality
- Data to assimilate
  - 10 years of production from 30 wells
  - Well oil production rate (OPR) and bottom-hole pressure (BHP), (700+ points)
  - 100-sized ensemble and 4 iterations are used in ESMDA



\*Peters, Lies, et al. "Results of the Brugge benchmark study for flooding optimization and history matching." SPE Reservoir Evaluation & Engineering 13.03 (2010): 391-405.

### **Results with** $N_e = 100$ and **No Localization**

• All data from all wells, concatenated together





### **Change in Dummy Parameters**



- ullet
- ullet



### Change in dummy parameters shows collapse of the ensemble

### Just looking at one dummy parameter is not enough

### **Localization Helps**

• All data from all wells, concatenated together

w/o localization

w/localization

200

simulatedObs\_iter5

400

Data Point simulations 🛛 😑 observed data

simulatedObs\_iter5







**€ ⊕** N? ∐

### **Change in Dummy Parameters w/ Localization**



- but not fully eliminated
- larger ensemble
- Dr. Bjarkason

| Mean Shift            |  |
|-----------------------|--|
| Uncertainty reduction |  |



# • Ensemble collapse is alleviated

# • Could be further improved with

### Current implementation not reliable for probabilistic forecast

See talks by Dr. Aanonsen and

| Dummy 1 | Dummy 2 |
|---------|---------|
| -0.2    | 0.08    |
| 66%     | 40.9%   |

### **ESMDA for Deterministic History Matching**

- Input: A base model with proper parameterization of uncertainties
- Output: An improved model that better matches the history with minimal update •
- Challenge: How to select the "improved model" from the final iteration







### Improved model

### **ESMDA for Deterministic History Matching**

- Challenge: How to select the "improved model" from the final iteration
  - Option 1. Choose the one with the best match...Could be overfitting
  - Option 2. Take the mean of the ensemble...Violate statistics
  - Option 3. Choose base on P50 of the prediction...Still could be overfitting







### **ESMDA** for Deterministic History Matching (Model Maturation)

- Challenge: How to select the "improved model" from the final iteration
  - Option 4. Include the base model in the prior ensemble, choose the corresponding posterior model









### **Example 2: ESMDA for Deterministic History Matching**

General model maturation workflow •



- History matching the permeability( $\mathbf{k}$ ) and porosity ( $\boldsymbol{\phi}$ ) field in Reservoir X
  - -8 million active cells. 16 million uncertainty parameters in total
  - Ensemble generated by perturbation upon the base model through sequential Gaussian simulation
  - Data to match: Well BHP at one of the producers





Select updated model from posterior ensemble

### **History Matching Quality**

- 200-sized ensemble and 5 iterations are used
- A total of 1200 simulations are run





### **ESMDA for Deterministic History Matching**

Due to the embedment of the base model in the ensemble, the update from the base model is • minimized and locally contained.





### **ESMDA for Deterministic History Matching**

- Update is mostly confined to relevant area identified by ESMDA, localization working
- Possible spurious update could be alleviated by (a) Manually limit update to area of interest, (b) increase ensemble size





### **Grid-Based Model Update from ESMDA vs Adjoint**

- Both ESMDA and Adjoint identify similar areas to update
- ESMDA also identifies areas based on prior correlation/continuity, while Adjoint does not ٠
- Adjoint is free of spurious update





### **Example 3: History Matching with Parameter-Based Uncertainty**

- Fluvial reservoir with parameter-based uncertainty characterization ٠
- 86 regions with 546 uncertainties to match 3 years of data from 6 wells ٠
  - Regional: k, kvkh, pv, cut-off; Global: PVT, initial GOR, fluid contacts
  - Facies: Rel. Perm.; Well/Completions: PI, PI degradation
  - Regions defined based on drainage area and seismic
- ESMDA was able to match data not covered by prior ensemble
- Uncertainty reduction makes sense qualitatively but not reliable • quantitatively







### Prior and posterior parameter distributions

### Summary

- Lesson Learned: •
  - ESMDA does not work well with categorical uncertainties
  - ESMDA can be applied for both parameter-based and realization-based uncertainty characterization
  - Dummy variable can be used to validate/invalidate the uncertainty quantification
- Challenge faced •
  - When used for probabilistic history matching, ESMDA still suffer ensemble collapse even with localization in addition to nonlinearity of the problem, making it unreliable for uncertainty quantification
  - When used for deterministic history matching, it is an open question as to how to select one model



### **Outline**

- History matching in oil and gas
- Implementation of ESMDA
- Probabilistic history matching example
- Deterministic history matching example
- Quantifying modeling error



### **Formulating the Error**

• Result of any probabilistic history matching method heavily depend on the error

$$m_i^{n+1} = m_i^n + C_{md}^n (C_{dd}^n + \alpha_n C_e^n)^{-1} [d_i^n - (d_{obs}^n)^{-1}]$$

- Four concepts of data
  - Simulated data  $(\tilde{d})$ , observation data (d), true response  $(\hat{d})$  and observed data  $(d_{obs})$
  - Measurement error:  $\mathbf{e}_{me} = d \hat{d}$ 
    - For example, gauge accuracy, indirect measurement
  - Modeling error:  $\mathbf{e}_{\mathbf{mo}} = \widehat{d} \widetilde{d}$ 
    - For example, uncaptured physics, missing small scale uncertainty
- Quantifying error
  - Physics-based: Identify the major sources of error and analyze them one-by-one
  - Data-driven: Quantify error based on inconsistency between observed data and simulated data
    - Cons: No inconsistency does not mean no error •



# $+ e_{i}^{n}$

## Modeling Error due to Omission of Local Variation

- Local and global variation:
  - Static uncertainty routinely characterized by long range uncertainty (multipliers)
  - Learning from local data may be falsely generalized to the full-field \_\_\_\_\_
  - This leads to overestimated S-curve update during history matching



**Global** variation



Global + Local variation



He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018





# **Example Problem**

- **1D primary production problem** (1001 grids)
  - Data: BHP at the producer at 100 days
  - Porosity field:  $\phi = \phi_g + \phi_l$ —
  - Objective function: Original oil in place ( $OOIP = \sum_i \phi_i S_{oi} V_i$ )

600 100 200 300 400 500 700 800 900 1D toy reservoir, porosity is shown

producer

- Coarse uncertainty characterization (global only)
  - Global porosity multiplier ~N(0.25,0.03)
- Fine uncertainty characterization (global + local) ۲
  - Global porosity multiplier ~N(0.25,0.03) —
  - Local porosity variation  $\sim N(0,0.0.5)$  & variogram=1500 ft



He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018







### **S-Curve Update with Coarse Model**

- Rejection sampling is used with measured BHP (3100 psi)
- Little OOIP uncertainty left with 50 psi of measurement error lacksquare





He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018



## **S-Curve Update with Fine Model**

- Spread of data to OOIP substantially increased
- Local  $\phi$  variation has no impact for prior OOIP CDF, while large impact for posterior distribution.





He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018

# **Problem Formulation**

Assumption: Objective function *J* is global, not affected by local param. variation •

$$J_f = J(\boldsymbol{m}_g + \boldsymbol{m}_l) = J(\boldsymbol{m}_g) = J_c = J$$

- Distribution of samples from fine characterization:  $P(J, d_f)$
- Distribution of samples from coarse characterization:  $P(I, d_c)$  $\bullet$
- Bayes rule for posterior distribution  $P((J, d)|d_{obs})$

$$P((J,d)|d_{obs}) = P(J,d) \frac{P(d_{obs}|(J,d))}{P(d_{obs})}$$

Rejection sampling using coarse model

$$P_{acc} = \exp\left(-\frac{1}{2}(d - d_{obs})^T \Sigma_e^{-1}(d - d_{obs})\right)$$



He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018



## **Modeling Error and Correction Factor**

Fine characterization data

$$d_{obs} = d_f + e_{me}$$

Coarse characterization data  $\bullet$ 

$$d_{obs} = d_c + e_{mo} + e_{me}$$

Rejection sampling using fine model •

$$P_{acc} = \exp\left(-\frac{1}{2}\left(d_f - d_{obs}\right)^T \Sigma_{me}^{-1}\left(d_f - d_{obs}\right)\right)$$

Rejection sampling using coarse model

$$P_{acc} = \exp\left(-\frac{1}{2}(d_{c} - d_{obs})^{T}(\Sigma_{mo} + \Sigma_{me})^{-1}(d_{c} - d_{obs})\right)$$

Modeling error and inflation factor  $\tau$ •

$$\Sigma_{mo} = (\Sigma_{dd})_f - (\Sigma_{dd})_c = \tau(\Sigma_{dd})_c$$

Modeling error is proportional to variance in the simulated data •



He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018



### **Derivation for Correction Factor**

Analytical formula for correction factor  $\tau$ 

$$\tau_{d_1 d_2} = \frac{\int_{\Omega} \int_{\Omega} f_1(\mathbf{x}_i) C_l(\mathbf{x}_i, \mathbf{x}_j) f_2(\mathbf{x}_j) d\mathbf{x}_i d\mathbf{x}_j}{\int_{\Omega} \int_{\Omega} f_1(\mathbf{x}_i) C_g(\mathbf{x}_i, \mathbf{x}_j) f_2(\mathbf{x}_j) d\mathbf{x}_i d\mathbf{x}_j}$$

 $f_i(x)$ : How sensitive is data  $d_i$  to uncertain properties at location x  $C(x_i, x_i)$ : How correlated are uncertain properties at location  $x_i$  and  $x_i$ 

Empirical formula from regression of numerical solution

$$\tau_{dd} = \frac{\sigma_{m,l}^2}{\sigma_{m,g}^2} \left( \frac{1}{2(\gamma+1)^2} + \frac{1}{2(\gamma+1)} \right)$$
  
Formula for 1D problem 
$$\tau_{dd} = \frac{\sigma_{m,l}^2}{\sigma_{m,g}^2} \exp\left(-0.8 \left(\frac{\lambda}{\rho}\right)^{0.9}\right)$$
  
Formula for 2D isotropic problem Formula for



He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018

# r 2D a

$$\left(\frac{1}{0.4\gamma_y+1}\right)^{1.5}$$

# What Controls Correction Factor

Formula for 2D isotropic problem from regression of numerical solutions

$$\tau_{dd} = \frac{\sigma_{m,l}^2}{\sigma_{m,g}^2} \exp\left(-0.8 \left(\frac{\lambda}{\rho}\right)^{0.9}\right)$$

 $\sigma_{\underline{m,l}}^2$ Strength of local variation compared with the global variation

Strong local variation -> large modeling error

- Data detection range  $\lambda$ :  $\bullet$ 
  - Small  $\lambda$  -> large modeling error
- Variogram range  $\rho$ :  $\bullet$ 
  - Small  $\rho$  -> small modeling error
  - Local assumption:  $\rho <<$  reservoir size





He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018



# **Case 1. Single Well Measurement with 1D Problem**

- Measuring well BHP to calibrate OOIP
  - Global porosity component:  $\sigma_{\phi,c} = 0.03$
  - Local porosity component:  $\sigma_{\phi,f} = 0.05$ ;  $\rho = 4000 ft$ \_\_\_\_
  - Detection range:  $\lambda = 1500 ft$ , simulation BHP in std:  $\Sigma_{dd,c}$ = 280 psi
- Modeling error  $\frac{\sigma_{m,l}^2}{\sigma_{m,r}^2} \left( \frac{1}{2(\gamma+1)^2} + \frac{1}{2(\gamma+1)} \right) < \Sigma_{dd,c}$  is 478 psi in std.



200

300

400



| 600 | 700 | 800 | 900 | 1000 |
|-----|-----|-----|-----|------|

## **Case 2. Single Well Consecutive Measurement**

- Measuring well BHP at 100 day and 200 day
  - Global porosity component:  $\sigma_{\phi,c} = 0.03$
  - Local porosity component:  $\sigma_{\phi,f} = 0.05$ ;  $\rho = 4000 ft$
- Modeling error for the two data points are <u>highly correlated</u>





He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018



## **Case 3. Measurements from Two Different Wells**

- Measuring well BHP at 100 day and 200 day
  - Global porosity component:  $\sigma_{\phi,c} = 0.03$
  - Local porosity component:  $\sigma_{\phi,f} = 0.05$ ;  $\rho = 4000 ft$
- Modeling error for the two data points are weakly correlated









### **Case 4. 2D Isotropic Variogram Example**

- Global porosity component:  $\sigma_{\phi,c} = 0.03$
- Local porosity component:  $\sigma_{\phi,f} = 0.05$ ;  $\rho_x = \rho_y = 1500 ft$
- Data detection range:  $\lambda = 2500 ft$ ullet

$$\tau_{dd} = \frac{\sigma_{m,l}^2}{\sigma_{m,g}^2} \exp\left(-0.8 \left(\frac{\lambda}{\rho}\right)^{0.9}\right)$$

Formula for 2D isotropic problem





He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018

) 
$$\times 10^8$$



### **Case 5. 2D Anisotropic Variogram Example**

- Global porosity component:  $\sigma_{\phi,c} = 0.03$
- Local porosity component:  $\sigma_{\phi,f} = 0.05$ ;  $\rho_x = 2000 ft$ ;  $\rho_y = 1500 ft$
- Data detection range:  $\lambda_x = 10000 ft; \lambda_v = 5000 ft$

$$\tau_a = \frac{\sigma_{m,l}^2}{\sigma_{m,g}^2} \left(\frac{1}{0.4\gamma_x + 1}\right)^{1.5} \left(\frac{1}{0.4\gamma_y + 1}\right)^{1.5}$$

Formula for 2D anisotropic problem





### **Case 6. Extension to Multiple Random Fields**

Correction factor approximated as convex combination of those for individual fields •

$$\hat{\tau}_{total} = w_{\phi}\tau_{\phi} + w_{\zeta}\tau_{\zeta}$$

- Random field for porosity: Global ~ N(0.25,0.03); Local ~ N(0,0.04),  $\rho = 4000 ft$
- Random field for permeability: Cloud transform from porosity with 0.71 correlation







- Calibrate of global objective function with local data when omitting of local variation leads to • over-estimated S-curve update
- The error incurred by this local-global effect depends on  $\bullet$ 
  - Variance in the simulated data
  - Data detection range —
  - Ratio between variances of local and global variation
  - Variogram range of the local variation
- Local-global modeling error can be highly correlated for different data points
- Formula for correction factor is proposed and validated •

$$\tau_{dd} = \frac{\sigma_{m,l}^2}{\sigma_{m,g}^2} \left( \frac{1}{2(\gamma+1)^2} + \frac{1}{2(\gamma+1)} \right)$$

Formula for 1D problem

$$\tau_{dd} = \frac{\sigma_{m,l}^2}{\sigma_{m,g}^2} \exp\left(-0.8 \left(\frac{\lambda}{\rho}\right)^{0.9}\right)$$

Formula for 2D isotropic problem

$$au_{a} = rac{\sigma_{m,l}^{2}}{\sigma_{m,g}^{2}} \left( rac{1}{0.4\gamma_{x}} - rac{1}{0.4\gamma_{x}} \right)$$



He et al., Calibrating Global Uncertainties to Local Data: Is the Learning Being Over-Generalized? SPE ATCE 2018



### Summary

- Strong interest from field engineers to use ensemble method for data assimilation
- Various types of problems
  - Parameter-based vs realization-based uncertainty characterization
  - Probabilistic vs deterministic history matching
- Final ensemble from ESMDA not always reliable for uncertainty quantification, even with ۲ localization
- Still an open question how to select the best posterior model in the deterministic history matching setting
- Parameter-based uncertainty characterization that omits local variation could lead to model error •
  - Such error is proportional to the data variance in the coarse characterization
  - Such error could be highly correlated for different data points
  - Such error could be estimated and corrected through numerical/empirical formula

