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Outline

• History matching in oil and gas

• Implementation of ESMDA

• Probabilistic history matching example

• Deterministic history matching example

• Quantifying modeling error 



3© 2019 Chevron© 2019 Chevron

History matching problem in the oil and gas industry

• Governing equations for subsurface oil and gas flow (mass conservation)

• Reservoir simulations are driven by uncertainties, not chaotic behaviors

– State: Pressure (𝑝), saturation (𝑆), …

– Observation (𝒅): Production/injection data at the wells (𝑞), …

– Uncertainties (𝒎): Porosity (𝜙) and permeability (𝑘) distribution, fluid mobility (𝜆), 

compressibility, geological structure, facies, fluid PVT … Can be continuous or categorical 

• History matching (a.k.a., data assimilation in petroleum engineering):

– Calibrate the uncertainty parameters (𝒎, usually non-Gaussian) to production history (𝒅, 

usually nonlinear to 𝒎) to reduce uncertainty and improve accuracy in the forecast. 
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Probabilistic History Matching vs Deterministic History Matching

• Probabilistic history matching: Prior distribution in, posterior distribution out

– Popular methods: Design of experiment + proxy + Monte Carlo, ensemble methods

– Does ensemble-based method provide reliable estimate of posterior uncertainty? 

• Deterministic history matching: One model in, one model out

– Popular methods: Optimization-based algorithms such as the genetic algorithms and adjoint

– Can ensemble-based method be used for deterministic history matching?

Initial 

History 

matching

Final

History 

matching
Base model Improved model
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Parameter-Based vs Realization-Based Characterization

• Characterization of Uncertainties: Parameter-based vs Realization-based 

• Challenge: 

– Not all parameters are spatial

– How to incorporate modeling errors in parameterization

Realization-based characterization**Parameter-based* 

**Peters, Lies, et al. "Results of the Brugge benchmark study 

for flooding optimization and history matching." SPE 

Reservoir Evaluation & Engineering 13.03 (2010): 391-405.

*He, Jincong, et al. "Quantifying expected uncertainty 

reduction and value of information using ensemble-variance 

analysis." SPE Journal 23.02 (2018): 428-448
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Comparison to Other Ensemble-Based Methods

• Ensemble Kalman filter (EnKF)

– Cons: Difficult to implement; Unphysical update (e.g., negative saturation, see Dr. Pfander’s talk); 

Inconsistent with governing equations

• Iterative ensemble smoother 

– Pros: No need to update states; Use simulator as black box; Consistent with the governing equations

……

……

……

…
…



7© 2019 Chevron© 2019 Chevron

Ensemble Smoother with Multiple Data Assimilation

• ESMDA formula for uncertain parameter update (Emerick and Reynolds 2013)*

• 𝛼 controls the step size of the update: It satisfies ∑
1

𝛼𝑛
= 1

– Taking a journey in multiple steps to tackle nonlinearity

• It is proven that the final ensemble follows posterior uncertainty when 

– Linear-Gaussian problem with an infinite-sized ensemble

• Possible alternatives: D-ESMDA (Emerick 2018), EnRML (Raanes 2019, Chen and 

Oliver 2012) 

*Emerick, Alexandre A., and Albert C. 

Reynolds. "Ensemble smoother with 

multiple data assimilation." Computers & 

Geosciences 55 (2013): 3-15.
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Localization

• Kalman gain could suffer from spurious correlations that lead to ensemble collapse

• Factors that seem to aggravate the ensemble collapse

– (1) Small ensemble size, (2) Large number of (redundant) data point, (3) Small degree of freedom

– (4) Error/tolerance too small, (5) Simulation response inconsistent with the data

• Practical requirement for the location scheme

– Simple: Minimal user input, minimal information needed 

– Robust: Able to handle different type of uncertainties/data; Adaptive and self-learning

• Recent work 

– Correlation-based adaptive localization (Zhang and Oliver, 2010; Anderson, 2016; Luo et al. 2018)

– A comprehensive review and comparison (Chen and Oliver, 2016)
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Bootstrap-Based Localization

• Ideas: Dampen inconsistent elements in the Kalman as identified by bootstrap sampling

• Procedures

– Original Kalman gain:

– Step 1. Perform bootstrap sampling on the original ensemble to create 𝑛𝑏 bootstrapped ensembles 

– Step 2. For each bootstrapped ensemble calculate the Kalman gain matrix

– Step 3. Calculate the mean and variance of each Kalman gain elements across all bootstrapped 

ensembles

– Step 4. Dampen elements of the original Kalman gain according to level of inconsistency

𝑲 = 𝑪𝑚𝑑
𝑛 𝑪𝑑𝑑

𝑛 + 𝛼𝑛𝑪𝑒
𝑛 −1

𝑲𝑖𝑗
𝑠 =

1

1 + 4𝝈𝐾𝑖𝑗
2 /ഥ𝑲𝑖𝑗

2 𝑲𝑖𝑗

*Zhang, Y. and Oliver, D. (2010). Improving the ensemble estimate of 

the Kalman gain by bootstrap sampling, Math Geosci, 42, 327-345. 
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Efficient Calculation of Kalman Gain

• Bootstrap-based localization requires repeated calculating of Kalman gain

• When the number of data (𝑛𝑑) is smaller (e.g., 𝑛𝑑 < 500)

– If 𝑛𝑑 is the smallest among 𝑛𝑑, 𝑛𝑚 and 𝑛𝑟

• Calculate the inverse directly

– If 𝑛𝑚 is the smallest among 𝑛𝑑, 𝑛𝑚 and 𝑛𝑟

• Solve 𝑛𝑚 linear equations 𝑪𝑑𝑑
𝑛 + 𝛼𝑛𝑪𝑒

𝑛 𝑲 = 𝑪𝑚𝑑
𝑛

– If 𝑛𝑟 is the smallest among 𝑛𝑑, 𝑛𝑚 and 𝑛𝑟

• Solve 𝑛𝑟 linear equations 𝑪𝑑𝑑
𝑛 + 𝛼𝑛𝑪𝑒

𝑛 𝑿 = 𝑫, then 𝑲 =
𝟏

𝒏𝒓−𝟏
𝑴𝑿

• When the number of data (𝑛𝑑) is large 

– Use the subspace method*
*Emerick, A.A., 2016. Analysis of the performance of ensemble-

based assimilation of production and seismic data. Journal of 

Petroleum Science and Engineering, 139, pp.219-239.

𝑲 = 𝑪𝑚𝑑
𝑛 𝑪𝑑𝑑

𝑛 + 𝛼𝑛𝑪𝑒
𝑛 −1
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Subspace Method

• Need to efficiently evaluate Kalman gain

• Procedure of the subspace method*

– Scale the data with error (matrix 𝑺)

– Perform SVD on data, only keep significant components (𝑫 = 𝑼𝒓𝑾𝒓𝑽𝒓
𝑇)

– Perform SVD on the error term to diagonalize it (matrix 𝑯𝑟)

– Use pseudo inverse instead of actual inverse 

• Not necessarily good approximation of the original problem (See Dr. Raanes’s talk)

• It is more robust and an enabling method for the bootstrap-based localization

𝑲 = 𝑪𝑀𝐷
𝑛 𝑪𝐷𝐷

𝑛 + 𝛼𝑛𝑪𝑒
𝑛 −1

𝑪𝐷𝐷
𝑛 + 𝛼𝑛𝑪𝑒

𝑛 −1 ≈ (𝑁𝑒 − 1)𝑺−𝟏𝑼𝒓𝑾𝒓
−𝟏𝒁𝒓 𝑰𝒓 +𝑯𝒓

−𝟏 𝑺−𝟏𝑼𝒓𝑾𝒓
−𝟏𝒁𝒓

𝑻

*Emerick, A.A., 2016. Analysis of the performance of ensemble-

based assimilation of production and seismic data. Journal of 

Petroleum Science and Engineering, 139, pp.219-239.
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ESMDA for Probabilistic History Matching

• ESMDA is proven to sample the posterior correctly in idealized scenarios 

• How would the method perform for probabilistic history matching for semi-realistic cases

Initial Final

ESMDA

Before history matching After history matching
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Example 1. Synthetic Problem with the Brugge Reservoir Model*

▪ Uncertainty parameters (92 parameters)

̶ Reservoir divided into 30 regions

̶ Horizontal permeability multiplier (kℎ)

̶ Vertical permeability multiplier (𝑘𝑣)

̶ Pore volume multipliers (PV)

̶ Two dummy variables 

̶ Independent of other uncertainties, have no impact on the simulation results

̶ Use to detect ensemble collapse and evaluate uncertainty analysis quality

▪ Data to assimilate

̶ 10 years of production from 30 wells

̶ Well oil production rate (OPR) and bottom-hole pressure (BHP), (700+ points)

̶ 100-sized ensemble and 4 iterations are used in ESMDA

Synthetic Brugge waterflood problem

*Peters, Lies, et al. "Results of the Brugge benchmark study 

for flooding optimization and history matching." SPE 

Reservoir Evaluation & Engineering 13.03 (2010): 391-405.
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Results with 𝑵𝒆 = 𝟏𝟎𝟎 and No Localization

• All data from all wells, concatenated together
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Change in Dummy Parameters

Dummy 1 Dummy 2

Mean Shift -1.02 0.14

Uncertainty 

reduction
100% 90.3%

Dummy 1 Dummy 2
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• Change in dummy parameters 

shows collapse of the ensemble

• Just looking at one dummy 

parameter is not enough
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Localization Helps

• All data from all wells, concatenated together

w/o localization w/ localization
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Change in Dummy Parameters w/ Localization

Dummy 1 Dummy 2

Mean Shift -0.2 0.08

Uncertainty 

reduction
66% 40.9%

Dummy 1 Dummy 2

P
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r
P

o
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r

• Ensemble collapse is alleviated 

but not fully eliminated

• Could be further improved with 

larger ensemble

• Current implementation not 

reliable for probabilistic forecast 

• See talks by Dr. Aanonsen and 

Dr. Bjarkason
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ESMDA for Deterministic History Matching

• Input: A base model with proper parameterization of uncertainties 

• Output: An improved model that better matches the history with minimal update

• Challenge: How to select the “improved model” from the final iteration

Initial 
Final

ESMDA

Before history matching After history matching

Base model Improved model
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ESMDA for Deterministic History Matching

• Challenge: How to select the “improved model” from the final iteration

– Option 1. Choose the one with the best match…Could be overfitting

– Option 2. Take the mean of the ensemble…Violate statistics

– Option 3. Choose base on P50 of the prediction…Still could be overfitting 

Initial 
Final

ESMDA

Before history matching After history matching

Base model Improved model
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ESMDA for Deterministic History Matching (Model Maturation)

• Challenge: How to select the “improved model” from the final iteration

– Option 4. Include the base model in the prior ensemble, choose the corresponding posterior model

Initial 
Final

ESMDA

Before history matching After history matching

Base model Improved model
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Example 2: ESMDA for Deterministic History Matching

• General model maturation workflow

• History matching the permeability(𝒌) and porosity (𝝓) field in Reservoir X

– 8 million active cells. 16 million uncertainty parameters in total 

– Ensemble generated by perturbation upon the base model through sequential Gaussian simulation

– Data to match: Well BHP at one of the producers

Base model (Real#1) before ESMDA Base model (Real#1) after ESMDA update

Base model 
Perturb uncertainties to 

generate a prior ensemble
ESMDA

Select updated model 

from posterior ensemble

ESMDA
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History Matching Quality

• 200-sized ensemble and 5 iterations are used

• A total of 1200 simulations are run

Iteration 0

Iteration 5

Observed data

Iteration 0

Iteration 5
Base model 

before update

Base model 

after update

B
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Number of simulations
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ESMDA for Deterministic History Matching

• Due to the embedment of the base model in the ensemble, the update from the base model is 

minimized and locally contained.

Base model (Real#1) before ESMDA

Base model (Real#1) after ESMDA update

Base model update = After - Before
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ESMDA for Deterministic History Matching

• Update is mostly confined to relevant area identified by ESMDA, localization working

• Possible spurious update could be alleviated by (a) Manually limit update to area of interest, (b) 

increase ensemble size

• Spurious update: possibly due to the 

generation of prior ensemble 

• Local update suggested by ESMDA to 

match target well BHP data

• Local update suggested by ESMDA 

based on correlation/continuity
Base model update = After - Before
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• Both ESMDA and Adjoint identify similar areas to update

• ESMDA also identifies areas based on prior correlation/continuity, while Adjoint does not

• Adjoint is free of spurious update

Grid-Based Model Update from ESMDA vs Adjoint

Porosity Update from ESMDA Porosity update from Adjoint Gradient
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Example 3: History Matching with Parameter-Based Uncertainty

• Fluvial reservoir with parameter-based uncertainty characterization

• 86 regions with 546 uncertainties to match 3 years of data from 6 wells

– Regional: k, kvkh, pv, cut-off; Global: PVT, initial GOR, fluid contacts

– Facies: Rel. Perm.; Well/Completions: PI, PI degradation 

– Regions defined based on drainage area and seismic

• ESMDA was able to match data not covered by prior ensemble

• Uncertainty reduction makes sense qualitatively but not reliable 

quantitatively

Before history matching After history matching

Seismic inversion volume
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Prior and posterior parameter distributions
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Summary

• Lesson Learned:

– ESMDA does not work well with categorical uncertainties

– ESMDA can be applied for both parameter-based and realization-based uncertainty characterization

– Dummy variable can be used to validate/invalidate the uncertainty quantification

• Challenge faced 

– When used for probabilistic history matching, ESMDA still suffer ensemble collapse even with 

localization in addition to nonlinearity of the problem, making it unreliable for uncertainty quantification

– When used for deterministic history matching, it is an open question as to how to select one model 
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Outline

• History matching in oil and gas

• Implementation of ESMDA

• Probabilistic history matching example

• Deterministic history matching example

• Quantifying modeling error 
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Formulating the Error

• Result of any probabilistic history matching method heavily depend on the error 

• Four concepts of data

– Simulated data (෩𝒅), observation data (𝒅), true response (𝒅) and observed data (𝒅𝒐𝒃𝒔)

– Measurement error: 𝐞𝒎𝒆 = 𝒅 − 𝒅

• For example, gauge accuracy, indirect measurement

– Modeling error: 𝐞𝐦𝐨 = 𝒅 − ෩𝒅

• For example, uncaptured physics, missing small scale uncertainty

• Quantifying error

– Physics-based: Identify the major sources of error and analyze them one-by-one 

– Data-driven: Quantify error based on inconsistency between observed data and simulated data

• Cons: No inconsistency does not mean no error 

𝒎𝑖
𝑛+1 = 𝒎𝑖

𝑛 + 𝑪𝑚𝑑
𝑛 𝑪𝑑𝑑

𝑛 + 𝛼𝑛𝑪𝑒
𝑛 −1 𝒅𝑖

𝑛 − 𝒅𝑜𝑏𝑠
𝑛 + 𝒆𝑖

𝑛
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Modeling Error due to Omission of Local Variation

• Local and global variation: 

– Static uncertainty routinely characterized by long range uncertainty (multipliers)

– Learning from local data may be falsely generalized to the full-field

– This leads to overestimated S-curve update during history matching
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Example Problem

• 1D primary production problem (1001 grids)

– Data: BHP at the producer at 100 days

– Porosity field: 𝝓 = 𝝓𝒈 +𝝓𝒍

– Objective function: Original oil in place (𝑂𝑂𝐼𝑃 = ∑𝑖𝜙𝑖𝑆𝑜𝑖𝑉𝑖)

• Coarse uncertainty characterization (global only)

– Global porosity multiplier ~N(0.25,0.03)

• Fine uncertainty characterization (global + local)

– Global porosity multiplier ~N(0.25,0.03)

– Local porosity variation ~N(0,0.0.5) & variogram=1500 ft

producer
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

S-Curve Update with Coarse Model

• Rejection sampling is used with measured BHP (3100 psi)

• Little OOIP uncertainty left with 50 psi of measurement error
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

S-Curve Update with Fine Model

• Spread of data to OOIP substantially increased

• Local ϕ variation has no impact for prior OOIP CDF, while large impact for 

posterior distribution.

BHP (psi)
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Problem Formulation

• Assumption: Objective function 𝐽 is global, not affected by local param. variation

• Distribution of samples from fine characterization: 𝑃(𝐽, 𝑑𝑓)

• Distribution of samples from coarse characterization: 𝑃(𝐽, 𝑑𝑐)

• Bayes rule for posterior distribution 𝑃((𝐽, 𝑑)|𝑑𝑜𝑏𝑠)

• Rejection sampling using coarse model

𝑃𝑎𝑐𝑐 = exp −
1

2
𝑑 − 𝑑𝑜𝑏𝑠

𝑇Σ𝑒
−1 𝑑 − 𝑑𝑜𝑏𝑠

𝐽𝑓 = 𝐽 𝒎𝑔 +𝒎𝑙 = 𝐽 𝒎𝑔 = 𝐽𝑐 = 𝐽

𝑃 𝐽, 𝑑 𝑑𝑜𝑏𝑠 = 𝑃(𝐽, 𝑑)
𝑃(𝑑𝑜𝑏𝑠| 𝐽, 𝑑 )

𝑃(𝑑𝑜𝑏𝑠)
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Modeling Error and Correction Factor

• Fine characterization data

• Coarse characterization data

• Rejection sampling using fine model

• Rejection sampling using coarse model

• Modeling error and inflation factor 𝜏

• Modeling error is proportional to variance in the simulated data

𝑃𝑎𝑐𝑐 = exp −
1

2
𝑑𝑐 − 𝑑𝑜𝑏𝑠

𝑇 Σ𝑚𝑜 + Σ𝑚𝑒
−1 𝑑𝑐 − 𝑑𝑜𝑏𝑠

𝑃𝑎𝑐𝑐 = exp −
1

2
𝑑𝑓 − 𝑑𝑜𝑏𝑠

𝑇
Σ𝑚𝑒
−1 𝑑𝑓 − 𝑑𝑜𝑏𝑠

𝑑𝑜𝑏𝑠 = 𝑑𝑓 + 𝑒𝑚𝑒

𝑑𝑜𝑏𝑠 = 𝑑𝑐 + 𝑒𝑚𝑜 + 𝑒𝑚𝑒

Σ𝑚𝑜 = (Σ𝑑𝑑)𝑓 − (Σ𝑑𝑑)𝑐 = 𝜏(𝛴𝑑𝑑)𝑐
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Derivation for Correction Factor

• Analytical formula for correction factor 𝜏

• Empirical formula from regression of numerical solution

𝑓𝑖(𝑥): How sensitive is data 𝑑𝑖 to uncertain properties at location 𝑥

𝐶(𝑥𝑖 , 𝑥𝑗): How correlated are uncertain properties at location 𝑥𝑖 and 𝑥𝑗



37© 2019 Chevron

He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

What Controls Correction Factor

• Formula for 2D isotropic problem from regression of numerical solutions

• Strength of local variation compared with the global variation 
𝜎𝑚,𝑙
2

𝜎𝑚,𝑔
2

– Strong local variation -> large modeling error

• Data detection range 𝜆: 

– Small 𝜆 -> large modeling error

• Variogram range 𝜌:

– Small 𝜌 -> small modeling error 

– Local assumption: 𝜌 << reservoir size
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Case 1. Single Well Measurement with 1D Problem

• Measuring well BHP to calibrate OOIP

– Global porosity component: 𝜎𝜙,𝑐 = 0.03

– Local porosity component: 𝜎𝜙,𝑓 = 0.05; 𝜌 = 4000𝑓𝑡

– Detection range: 𝜆 = 1500𝑓𝑡, simulation BHP in std: 𝛴𝑑𝑑,𝑐= 280 psi

• Modeling error                          ×𝛴𝑑𝑑,𝑐 is 478 psi in std.
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Case 2. Single Well Consecutive Measurement

• Measuring well BHP at 100 day and 200 day

– Global porosity component: 𝜎𝜙,𝑐 = 0.03

– Local porosity component: 𝜎𝜙,𝑓 = 0.05; 𝜌 = 4000𝑓𝑡

• Modeling error for the two data points are highly correlated
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Case 3. Measurements from Two Different Wells

• Measuring well BHP at 100 day and 200 day

– Global porosity component: 𝜎𝜙,𝑐 = 0.03

– Local porosity component: 𝜎𝜙,𝑓 = 0.05; 𝜌 = 4000𝑓𝑡

• Modeling error for the two data points are weakly correlated

C
D

F
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Case 4. 2D Isotropic Variogram Example

• Global porosity component: 𝜎𝜙,𝑐 = 0.03

• Local porosity component: 𝜎𝜙,𝑓 = 0.05; 𝜌𝑥 = 𝜌𝑦 = 1500𝑓𝑡

• Data detection range: 𝜆 = 2500𝑓𝑡
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Case 5. 2D Anisotropic Variogram Example

• Global porosity component: 𝜎𝜙,𝑐 = 0.03

• Local porosity component: 𝜎𝜙,𝑓 = 0.05; 𝜌𝑥 = 2000𝑓𝑡; 𝜌𝑦 = 1500𝑓𝑡

• Data detection range: 𝜆𝑥 = 10000𝑓𝑡; 𝜆𝑦 = 5000𝑓𝑡
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Case 6. Extension to Multiple Random Fields

• Correction factor approximated as convex combination of those for individual fields

• Random field for porosity: Global ~ 𝑁(0.25,0.03); Local ~ 𝑁 0,0.04 , 𝜌 = 4000𝑓𝑡

• Random field for permeability: Cloud transform from porosity with 0.71 correlation
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He et al., Calibrating Global Uncertainties to Local Data: Is 

the Learning Being Over-Generalized? SPE ATCE 2018

Summary

• Calibrate of global objective function with local data when omitting of local variation leads to 

over-estimated S-curve update

• The error incurred by this local-global effect depends on 

– Variance in the simulated data 

– Data detection range 

– Ratio between variances of local and global variation

– Variogram range of the local variation

• Local-global modeling error can be highly correlated for different data points

• Formula for correction factor is proposed and validated
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Summary

• Strong interest from field engineers to use ensemble method for data assimilation

• Various types of problems

– Parameter-based vs realization-based uncertainty characterization

– Probabilistic vs deterministic history matching

• Final ensemble from ESMDA not always reliable for uncertainty quantification, even with 

localization

• Still an open question how to select the best posterior model in the deterministic history 

matching setting

• Parameter-based uncertainty characterization that omits local variation could lead to model error

– Such error is proportional to the data variance in the coarse characterization

– Such error could be highly correlated for different data points

– Such error could be estimated and corrected through numerical/empirical formula


