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Motivation

I Uncertainty quantification in history matching is typically based on a
single prior-model scenario. However, often, several alternative
models or scenarios are viable a priori.

I Geological scenarios, flow scenarios, alternative seismic
interpretations, etc.

I Ensemble-based data assimilation methods, like EnKF or ES, does
not handle alternative prior models or scenarios. Handling complex
model uncertanty is challenging.

I Bayesian theory for models provides a framework for this:
I “Total” uncertainty through Bayesian Model Averaging (BMA).
I Selecting models or scenarios based on comparing Bayesian Model

Probabilities (BMP’s), i.e., probability for a given model or scenario
to be correct given the data.
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Motivation, cont’d

I Bayesian model averaging and model probability rely on the calculation of
Bayesian Model Evidence (BME) or Bayes Factors (BF), which have a long
history within a number of fields for model comparison and model selection.

I Few applications to petroleum industry/reservoir modelling (Park et al.,
2013, Elsheikh et al., 2014, Hong et al, 2018).

I Recently, it has been shown that, for weakly nonlinear models, Bayesian
model selection can be efficiently coupled with ensemble-based data
assimilation methods (Carrassi et al., 2017).

I The methodology can be applied as a “simple” post-processing after having
applied standard ensemble-based data assimilation methods to the various
scenarios.

I However, the use of these methods are disputed. The calculations may be
very challenging with respect to e.g. stability, and further investigations of
the applicability to reservoir modeling and updating are necessary.
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BMA/BMP/BME/BF
I Bayesian Model Average (BMA):

P (∆|D) =
∑
k

P(∆|D,Mk)P(Mk |D)

I Bayesian (posterior) Model Probability (BMP):

P (Mk |D) =
P(D|Mk)Ppri (Mk)∑
j P(D|Mj)Ppri (Mj)

=
1∑

j
P(D|Mj )
P(D|Mk )

Ppri (Mj )
Ppri (Mk )

I Model Likelihood/Model Evidence (BME):

P (D|Mk) =

∫
P(D|θ,Mk)P(θ|Mk) dθ

Denominator in the “normal” Bayes formula for model k .
I Bayes factor (BF):

BFj-k =
P(D|Mj)

P(D|Mk)
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Some alternatives for calculating BME

1. Gauss-linear approximation

P (D|Mk) = N (Gkθk ,Ck)

= ((2π)nd detCk)−1/2 exp
{
−1
2

(D − Gkθk)TC−1
k (D − Gkθk)

}
Ck = CD + GkCθkG

T
k

P (D|Mj)

P (D|Mk)
=

(
detCk

detCj

)1/2

exp
{
− 1

2

[
(D − Gjθj)

TC−1
j (D − Gjθj)

− ( D − Gkθk)TC−1
k (D − Gkθk)

]}
where θk is prior mean and Ck is prior covariance matrix.

Utilizing the ensemble representation of the pdf’s, the calculations may be performed
in a space of dimension equal to the ensemble size.
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P(θ|D,Mk)

using e.g. posterior mean or MAP estimate for θ.
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Alternatives for calculating BME
1. Gauss-linear approximation

2. “Inverted Bayes”, i.e.,

P (D|Mk) =
P(D|θ,Mk)P(θ|Mk)

P(θ|Mk ,D)
, (1)

using e.g. posterior mean or MAP estimate for θ.

3. Importance sampling with posterior ensemble as importance sampler,
i.e., averaging Eq. (1) over posterior ensemble.

4. Harmonic average of likelihoods over posterior ensemble
(approximation to the importance sampling above):

P (D|Mk) ≈

{
1
Ne

Ne∑
i=1

1
P(D|θi ,Mk)

}−1

, (2)

5. Eq. 2 with only one realization, i.e., simply the likelihood function
(with posterior mean, e.g.).
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Challenges

I Stability issues: BMP very sensitive to “everything” (amount of data,
data mismatch, prior and data covariance matrices, quality of
posterior, degree of nonlinearity, ...).

I Gauss-linear: Nonlinear forward model (BMP mainly depends on
prior properties).

I Inverted bayes (single-value or average): Requires calculating 3
probabilities, which may be small away from the mean.

I Harmonic average: Requires large ensemble size; very sensitive to
individual ensemble members with small likelihood values (unstable).

I Likelihood function: Does not take into account prior uncertainty.
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Some approaches to
handle these challenges

I Multidimensional scaling and kernel density estimation of likelihood
(Park et al., 2013).

I Localization (Metref et al., 2018).

I Multilevel methods (Hoel et al., 2016, Fossum et al., 2019)



Examples

From S.I. Aanonsen, S. Tveit and M. Alerini:

Using Bayesian Model Probability for Ranking Different Prior Scenarios in
Reservoir History Matching

SPEJ, 2019



Example 1
Measurements of one, single parameter

Bimodal prior
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Example 1
Bayesian average vs “Total EnKF”
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Example 1
Bayesian average with repeated measurements
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Example 2
Estimating top reservoir surface from 4D seismic data

Synthetic model inspired by a real North Sea oil field

Seismic interpretations

0 500 1000 1500 2000
x

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

D
e
p
th

GI-0
GI-1

OP-0 OP-1OP-2

Top interpretation 1
Top interpretation 2
Top interpretation 3
True top and base

Prior realizations

0 5 10 15 20 25 30 35 40
Grid cell

1000

1020

1040

1060

1080

D
e
p
th

model 1
model 2
model 3

GI-0
GI-1

OP-0 OP-1OP-2

Gas injection into undersaturated oil reservoir. 2D cross section
Data: Gas-cap thickness
No of parameters: 40
No of ensemble members: 100



Example 2
Results Ensemble Smoother. Data at 100 and 200 days
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Pink: Prior ensemble. Green: Posterior ensemble. Black: True model.



Example 2
Predicted GOC at 200 days. Data at 100 and 200 days
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Example 2
Predicted gas thickness at 200 days. Data at 100 and 200 days
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Example 2
Model probability — effect of data variance

Data Model Gauss- Inverted Importance Harmonic
variance Linear Bayes∗) sampling average

9m2
1 1.4E-39 1.6E-62 1.4E-22 7.9E-24
2 2.6E-15 1.4E-28 3.0E-12 6.3E-27
3 1.0 1.0 1.0 1.0

360m2
1 0.04 0.03 0.03 0.04
2 0.15 0.11 0.15 0.11
3 0.81 0.86 0.82 0.85

*) With θ = posterior mean

All pdf’s are assumed Gaussian. Mean and covariances for prior and posterior
from respective ensembles.



Example 2
Model probability — effect of the amount of data

Data Model Model
probability

1 0.25
One seismic survey at 100 days 2 0.33

3 0.42
1 0.03

Two seismic surveys at 100 and 200 days 2 0.15
3 0.82
1 0.004

Ten seismic surveys at 100, 200,..., 1000 days 2 0.01
3 0.98

Data variance: 360m2

Method: Importance sampling



Example 2
Model probability (%) — 10 independent runs

Mean Std
Model 1 3.96 0.54
Model 2 18.3 2.28
Model 3 77.8 2.64

.

10 independent prior ensembles
Data: 2 surveys at 100 and 200 days
Data variance: 360m2

Method: Importance sampling



Summary and conclusions

I There is a need for methodology to take into account several alternative
prior models in history matching and uncertainty analysis.

I Bayesian methods for models provide a consistent way to handle this:
I “Total” uncertainy analysis (BMA)
I Posterior model probability (BMP)
I Model selection (BME/BF)

I Calculating BME and BMP is challenging:
I BME very sensitive to “everything”.
I Approximations, including data reduction, may be required, and the results

may be very sensitive to these approximations.

I More research is needed to understand the methodology and its
applicability to reservoir modelling.
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