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Motivation for CDA

- Coupled data assimilation (CDA) is characterized by the use
of a coupled forecast model, but more generally focuses on
the assimilation of information from multiple spatiotemporal
scales, often derived from different components of the Earth
system.

- Weakly coupled DA (WCDA) allows information to be
transferred between scales via the forward model
iIntegration

- Strongly coupled DA (SCDA) attempt to transfer information
iInstantaneously at the analysis time, and also in the model



Aside - definitions

- Weakly coupled data .
assimilation (WCDA) ¥
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- At this point, when |
discuss ‘Coupled Data
Assimilation” (CDA), |
implicitly refer to SCDA.

Weakly Coupled Data Assimilation
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A review of SCDA applied to Simple models

Han et al. (2013): Lorenz atmosphere and a pycnocline ocean model

- “"Results show that it requires a large ensemble size
to improve the assimilation quality by applying
coupling error covariance in an ensemble coupled data
assimilation system... It is also found that a fast-
varying medium has more difficulty being improved
using observations in slow-varying media by
applying coupling error covariance because the
inear regression from the olbservational increment in
slow-varying media has difficulty representing the high-
frequency information of the fast-varying medium.”




A review of SCDA applied to Simple models

- Liu et al. (2013): Lorenz atmosphere and Jin ocean model

- SCDA that assimilates observations in both the atmosphere

and ocean and that employs

the coupled covariance matrix

outperforms the WCDA alternative.

- Assimilation of synoptic atmosp
improvement of both the atmos
through coupled covariance, es

neric variability was critical for the
oheric state and the oceanic state

oecially in the midlatitude system

- The assimilation of synoptic atmospheric observation alone
improved the coupled state almost as much as assimilating
additional oceanic observations, while the assimilation of
oceanic observations had little impact on the atmosphere.



A review of SCDA applied to Simple models

Lorenz (1984) atmosphere and Stommel 3-box ocean

-+ Tardif et al. (2014): =

Forcing the idealized ocean model with atmospheric analyses is
inefficient at recovering the slowly evolving MOC

Daily assimilation rapidly leads to accurate MOC analyses,
provided a comprehensive set of oceanic observations Is
available for assimilation

- In the absence of sufficient observations in the ocean, the
assimilation of time-averaged atmospheric observations
proves to be more effective for MOC initialization than
either forcing the ocean or assimilating sparse ocean
observations.



A review of SCDA applied to Simple models

- Smith et al. (2015): idealized single-column atmos/ocean model

- Incremental 4D-Var - “When compared to uncoupled
initialisation, coupled assimilation is able to produce more
balanced initial analysis fields, thus reducing initialisation
shock and its impact on the subsequent forecast.”
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A review of SCDA applied to Simple models

- Smith et al. (2017): idealized single-column atmos/ocean model

"‘consider cross correlations rather than cross covariances
because different components of the coupled state vector have
very different levels of variability; standardizing prevents variables
with large error variances from dominating the structure of the
covariance matrix”

- “Within the boundary region there is notable variation in the
strength and structure of the error cross correlations
between summer and winter, and between day and night. *

- "atmosphere—ocean forecast error cross correlations are very
state and model dependent...the static B formulation assumed in

traditional 4D-Var may not be sufficient”



A review of SCDA applied to Simple models

- Smith et al. (2018): idealized single-column atmos/ocean model

- “compare methods for improving the rank and conditioning
of multivariate sample error covariance matrices for [CDA].”

“The first method, reconditioning, alters the matrix
eigenvalues directly; this preserves the correlation
structures but does not remove sampling noise."

- “The second method, model state-space localization via
the Schur product, effectively removes sample noise
but can dampen small cross-correlation signals.”



A review of SCDA applied to Intermediate
Complexity models

Lu et al. (2015): FOAM Low resolution Earth system GCM

- The use of time-averagea

surface temperature | Simce

observations was .l Ave?

necessary for SCDA to L rve20

outperform WCDA, 2 14l

otherwise SCDA y 13

performed worse than z 2

WCDA in the midlatitudes 1': I y
0.9 ——— < /

Results may have been sl S —— _

iInfluenced by the small 50 40 30 20 10 0 0 20 30 40 50

Latitude

ensemble size (16), coarse | |
. FIG. 5. Zonal-mean RMSE of monthly SST from the SimCC experiment and the LACC ex-
m Od el g [l d (7 i 50 X 4 i 50 periments with different averaging lengths, normalized by the WCDA experiment.

atmosphere and 2.8° x
1.4° ocean), and use of
monthly SST data



Overview

- Brief Bio/background
- Motivation for Coupled Data Assimilation (CDA)

- Prior results using Strongly Coupled Data Assimilation
(SCDA)

- Our results using SCDA with a simple coupled QG model

- Extending to more realistic systems



Modular Arbitrary Order Ocean Atmosphere Model
(MAOOAM)

- Truncated QG model

- 2-layer atmosphere (fast & no-flux boundary conditons .
& W3

component), 1-layer ocean \
(slow component) '

- Coupled dynamics and
thermodynamics

750 hPa .Z

O= x/L = 2n/n
+ Tangent Linear Model (TLM)
available for investigation of
Lyapunov exponents and
experimentation with 4D-Var De Cruz et al. (2016)

Vannitsem and Lucarini (2016)
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—xamining the forced and coupled systems

- We examine: Coupled system

- Atmosphere forced Atmosphere

by the coupled
ocean state

Forced system

Atmosphere
P -~
\\\

+ Ocean forced by
the coupled

atmospheric state  *Thg attempt is to emulate the
typical transition process in an

Fully coupled
modeling system

operational center like NCEP




Lyapunov spectrum of coupled system, forced
atmosphere, and forced ocean
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Lyapunov axponant (days™)

Lyapunov spectrum of coupled system, forced
atmosphere, and forced ocean

he discrepancy In scales can be
characterized by the ratio the magnitudes of
Lyapunov Exponents (LES)

0.4- *Note the LEs of the coupled system
appear like a ‘cut and paste’ of the
atmospheric and oceanic LEs

o
N

=4
(=]
i
o
o
o
a
L3
a
a
i
)
-
o
o
o
o
o
o
E
o

|
o
N

1
®
®

1
e
&

]

Q

I
g
<)}

]

o]

1
ol
@

[
=
(=

Cou'pled Atmos'p hara Cc'ean



Comparing forced ocean LEs with corresponding

coupled LEs

- What appears
as a jump’ in
the forced
ocean Lyapunov
spectrum
becomes a
smooth
transition in the
coupled system
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Lyapunov stabillity of the forced system
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Data assimilation stabilizes growing errors

Data assimilation provides a forcing towards the ‘true’
state that constrains growing errors

The drives the (conditional) Lyapunov exponents
negative, indicating stability

Ensemble Number=37; tw_da=0.1 Ensemble Number=21; tw_da=0.1; h=0.01 Ensemble Number=17{tw da=0.1; h=0.01
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Variational CDA

D B, cond=7.8e+15  x107 C, cond=190
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Due to the highly disparate scales, the B matrix is ill-
conditioned (i.e. ratio of largest to smallest eigenvalue >>1)

Either transforming to the correlation matrix (e.g. Smith et
al. 2018) or using the control variable transform can
mitigate this issue



Climato
various

ogical forecast error covariance B at

ead times

The structure of B changes depending on the lead time of the forecast

This may indicate that building B matrices for different timescales may be beneficial
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Assimilating olbservations in the entire coupled
domain using 3D-Var, 4D-Var, and the ETKF
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Assimilating only atmospheric observations
using 3D-Var, 4D-Var, and the ETKF (k=40)

- The accuracy of the 4D-Var > ;m """"""""""""""""""""""""""""""""""""""""" E—
and ETKF are compatible in — =
the atmosphere é ) _

v 15 i
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More explorations using the ETKF

- We examine a number of questions using the ETKF as our exploratory
DA tool

-+ For example we compare:
- Observing coupled state versus only atmosphere or ocean

- Observing the model native spectral space or transformed physical
grid space

- Using fixed or mobile observing network
- Varying ensemble sizes and analysis cycle windows

- Examining various forecast lead times



Stability of ETKF when observing
atmos / ocean / systems

ETKF of cpld mdoel with different obs domain; Ens_num: 37; tw_da = 0.1  ETKF of cpld mdoel with different obs domain; Ens_num: 37; tw_da = 0.1

Lyapunov exponents (day”™{-1})
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Comparing ETKF with observations in atmos/ocean
and in model spectral or transformed physical grid

RMSE with Ensemble =17 DA window = 2-hour
inflation=1.0 dt=0.1
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and observing networks

—xamining stability while varying ensemble size

There Is a more gradual
transition to stability as
ensemble size is increased
(versus uncoupled system)

Best accuracy occurs when
assimilating all olboservations
(atmos/ocean)

With sufficient ensemble
Size, ocean observations
alone can constrain the
coupled system, at
reduced accuracy.
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CDA with only ocean observations

Time mean RMSE when assimilating ocean only observations

Assimilation errors are
smallest when using

Atmosphere state with DA in Spectral Space Atmosphere state with DA in Physical Grid
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CDA with only ocean observations

Time mean RMSE when assimilating ocean only observations

Assimilation errors are
smallest when using
large ensembles and
small analysis cycle
windows

Atmosphere state with DA in Spectral Space Atmosphere state with DA in Physical Grid

16 mins |-

3e-04

1-hour |-

2e-04

2-hour |-

ation window

Observing the native | Scenario for atmosphere improves with large

model speciral space | ansemble sizes, and short analysis windows
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Hybrid-Gain CDA

Similarly to the forced systems, the Hybrid-Gain CDA is effective when
observing only atmospheric observations at stabilizing the filter at small
ensemble sizes, when the ETKF otherwise diverges

Unlike the forced system, the gaining of stability when observing only the
ocean is very gradual with increasing ensemble size. The Hybrid-Gain CDA
provides stability at low ensemble sizes and comparable results with large
ensemble sizes.

(a) (b) (c)
P full observation (grid space) I atmos observation (grid space) 0.10 ocean observation (grid space)
—— ETKF —— ETKF w—e  ETKF
“— hybrid -~ hybrid Y «— hybrid
£ 0,004+ — 3DVar £ 0.008+ — 3DVar 2 008 —— 3DVar
' I @
g g v
= 0.003 = 0.006 - 2 0061
¢ © @
S B k) e
§ 0.002 ¢ £ 0.004 8 0.04- R e  ——
2 o Ry
)
¢ U S ——— N I g
 0.001 @ 0.002 & 0.021
T - -t .-
0.000 v . . v v " v 0.000 v v ' " ' . 0.00
5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35
Ensemble size Ensemble size Ensemble size

(here, ETKF uses relaxation to prior)



Forecast accuracy at various lead times

Forecast accuracy in MAOOAM initialized with ETKF is similar in atmosphere for
SCDA, WCDA, and uncoupled perfect forcing case. Diverges for noisy forcing
case.

Forecast accuracy in the ocean is most accurate with SCDA for the first 48 hours
versus the perfect forcing case, and out to about 1 week versus the WCDA cases.

*RMSE of forecasts with lead times ranging from O to 10 days initialized from the analyses produced from 36,000 DA cycles
**noisy forcing uses white noise with magnitude 10% of climatological variability

- sCda-ETKF
— wecda-ETKF
- ucda-ETKF;true forcing
~  ucda-ETKF;noisy forcing
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SST and Surface Wind Interaction

- Stability of atmospheric boundary layer is

affected by SST

Wind stress divergence correlates with

cold to warm SST, and wind stress

convergence with warm to cold SST,
strongest with winds aligning with SST

gradient

Due to sensitivity In
lateral variations, the
wind stress curl IS
strongest where
winds align with
ISotherms.

21 July — 20 October 1999

a) TMI Average Sea Surface Temperature
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Applying SCDA to an Intermediate Complexity
mode

- Sluka at al. (2016): Coupled SPEEDY/NEMO model

-+ Assimilate atmospheric observations to update the
ocean directly via SCDA and compared to WCDA

- 130 atmosphere with 2° ocean telescoping to 0.25° In
tropics, using LETKF with an ensemble size of 40
members updated at a 6-hour analysis cycle

- Shows large reduction in errors using SCDA vs WCDA

Sluka, Penny, Kalnay, Miyoshi (2016)



Reduction in analysis error using

SCDA versus WCDA baseline
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Reduction in analysis error using
SCDA versus WCDA baseline
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Reduction in analysis error using
SCDA versus WCDA baseline

@ Rawinsondes (T, U, V, q, Ps) @ AIRS (T, q)
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Coupled Anomalies

Premise of

- Relationship between slowly
varying SST anomalies and low-
level (850 mb) atmospheric
vorticity anomalies.

+ Examination of CMIP5> model
output and NOAA reanalysis
products show coupled
anomalies driven by atmos In
the midlatitudes and by the
ocean In the tropics.

« Coupled anomalies exist in
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Geographically Dependent benefits of SCDA

Additional work with the

SPEEDY/NEMO coupled atm U RMSE (SEDA -WEDA
model (Sluka, 2018 Ph.D. | aﬁfv ﬁ\‘ei‘: .
Thesis) indicates similar . & {55 B
patterns of improvement & £ * *
due to SCDA £

For example:

observations of the
‘downstream’ system

Atmosphere
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Improve ‘upstream’ state
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Coupled Data Assimilation

SCDA - WCDA errors (blue is improved)
- Additional experiments oty

show that using SCDA to
assimilate observations
across domains tends to P N
improve the coupled -Gl
model state when
observations are
assimilated from the
‘downstream’
component 1o correct
the ‘upstream’ state
(w.r.t. information flow).
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—stimating Vertical Error Correlations

Using real data, vertical localization appears

necessary, e.g. in the Northern Atlantic/ Ens corr atm_t - ocn_t

Pacific (below), but the exact error ean - 0.3, Fuee ~026_ CFS
correlations are model-dependent (right) -
meaning there are lingering coupled
modeling errors that need to be addressed.
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Figure 3.13: STRONG - WEAK change in observation minus forecast (O-F)

RMSD for ocean temperature. Averaged over the tropics (TP) and Northern Hemi-
sphere (NH) at various depths (left) and shown spatially (right). For the spatial

plot blue is an RMSD improvement, red is a degradation. .
Sluka (2018) Courtesy: Takuma Yoshida




Conclusion

- SCDA produces superior coupled state estimates and forecasts in
idealized scenarios (vs. uncoupled or WCDA)

- With appropriate configuration, 1-way strong coupling can also
constrain an unobserved component of the coupled system

- Additional complications arise as model complexity increases, so
iIncreased study of CDA is needed with more realistic Earth system
models.

- Applying SCDA to coupled models using real observational data will
likely require improvements to the modeling at the interface.

* The work applying CDA to the MAOOAM coupled QG model will be
available online in the Journal of Advances in Modeling Earth Systems
(JAMES) in the near future - Penny et al. (2019).



