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Introduction: Seismic Tomography

Goal of seismic tomography: find physical parameters of
the subsurface from seismic wavefield data.
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The recorded data are directly linked to the subsurface
physical properties.

;jogm(m)wo
Comparison of observed wavefield with synthetic wavefield
allows formulating an inverse problem to find the model

that gives the best data-fit.

lllustration of the tomographic problem.
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Introduction: Full Waveform Inversion e

Offset (km)

In Full Waveform Inversion (FWI), we try to match the
entire recorded wavefield (dps) at receiver locations with
the synthetic waveform data computed in a starting model

(dear)-

FWI allows to obtain higher resolution than " classical”

Time (s)

tomography techniques relying only on travel time.

The FWI inverse problem is more difficult (more non-linear)
as it attempts to fit an entire pressure recordings.

Exemple of recorded wavefield data.
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Characteristics of FWI
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Workflow

ETKF-FWI
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Full Waveform Inversion Workflow
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Full Waveform Inversion Workflow

ETKF-FWI

Courtesy of Isabella Masoni

distance (m)
400

I 9
1985 2085 2185 2285
T (Vp) m/s

Inverse
Problem

600

distance (m)
400

1985 2085 2185
(Vp) m/s

distance (m)
200

2285 |

Forward
Problem

l

400



Full Waveform Inversion Workflow - Forward modeling

Distance (km)
0 2 4 6 8 10 12 14 16 18

As we try to fit the recorded wavefield with
synthetics, we need an appropriate forward
modeling engine to reproduce accurately wave
propagation physics.

The misfit of the FWI problem is : minm, %Hdca,(m) — dops]|?

ETKF-FWI



Full Waveform Inversion Workflow - Forward modeling

Distance (km)

As we try to fit the recorded wavefield with
synthetics, we need an appropriate forward
modeling engine to reproduce accurately wave
propagation physics.

The misfit of the FWI problem is : minm, %Hdca,(m) — dops]|?

ETKF-FWI



Full Waveform Inversion Workflow - Forward modeling

Distance (km)

As we try to fit the recorded wavefield with
synthetics, we need an appropriate forward
modeling engine to reproduce accurately wave
propagation physics.

The misfit of the FWI problem is : minm, %Hdca,(m) — dops]|?

ETKF-FWI



Full Waveform Inversion Workflow - Forward modeling

Distance (km)
12

As we try to fit the recorded wavefield with
synthetics, we need an appropriate forward
modeling engine to reproduce accurately wave
propagation physics.

The misfit of the FWI problem is : minm, %Hdca,(m) — dops]|?

ETKF-FWI



Full Waveform Inversion Workflow - Forward modeling

Distance (km)

As we try to fit the recorded wavefield with
synthetics, we need an appropriate forward
modeling engine to reproduce accurately wave
propagation physics.

The misfit of the FWI problem is : minm, %Hdca,(m) — dops]|?

ETKF-FWI



Full Waveform Inversion Workflow - Forward modeling

Distance (km)

As we try to fit the recorded wavefield with
synthetics, we need an appropriate forward
modeling engine to reproduce accurately wave
propagation physics.

The misfit of the FWI problem is : minm, %Hdca,(m) — dops]|?

ETKF-FWI



Full Waveform Inversion Workflow - Forward modeling

Distance (km)

As we try to fit the recorded wavefield with
synthetics, we need an appropriate forward
modeling engine to reproduce accurately wave
propagation physics.

The misfit of the FWI problem is : minm, %Hdca,(m) — dops]|?

ETKF-FWI



Full Waveform Inversion Workflow - Forward modeling

Distance (km)

As we try to fit the recorded wavefield with
synthetics, we need an appropriate forward
modeling engine to reproduce accurately wave
propagation physics.

The misfit of the FWI problem is : minm, %Hdca,(m) — dops]|?

ETKF-FWI



Full Waveform Inversion Workflow
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Courtesy of Isabella Masoni
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Courtesy of Isabella Masoni

distance (m)
400 600

I 9
1985 2085 2185 2285
T (Vp) m/s

Inverse Measurement
Problem
| distance (m)
200 400

Misfit function

dobs - dcal

=>minimum

R s 5
1985 2085 2185 2285
4 (Vo) mi |

Update
model

Forward
Problem

|




Introduction : Why using FIW ?

Traveltime tomography in the Valhall Oil Field.
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Introduction : Why using FIW ?

Full Waveform Inversion in the Valhall Oil Field.
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Motivations e

e FWI is generally applied in a deterministic fashion from a starting model
e FWI relies on local optimization (quasi-Newton)

e FWI results are generally difficult to assess

Only a few recent papers propose to tackle the uncertainy problem in FWI : still no systematic applications.

We propose an approach relying on a mixed-method based on an Ensemble Transform Kalman Filter and the
classic quasi-Newton optimization scheme to evaluate uncertainty in the FWI results.
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From FWI to ETKF-FWI
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Adapting the FWI problem to the EnKF

We define the FWI problem as a non-linear operator F

. 1
‘T_(m):mm 7||dca/(m)7dobsH2
m 2

e m is the model containing the n physical parameters
e d.,(m) the synthetic wavefield data computed in m
e d,ps the observed data

e ||.|| the Euclidean distance in the data space

Applying F on an initial model mg — unique solution with a local optimization scheme.

But how do we apply an EnKF to this static problem?
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Multi Scale Approach s

-

High
frequency

Full Waveform data fitting is ill-posed by nature. M 1

Non-unique, its cost function can be strongly non-convex.

The cost function convexity is primarily dominated by the ‘
data frequency content (due to the nature of cycle skipping

problem) \’\ /

We can use the multi-scale frequency strategy as a proxy

for evolution in the frequency domain.

Low
frequency

|

1D waveform cost function, at different frequency content from
(Bunks et al., 1995)
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The ensemble approach and dynamic axis e

We can recast our problem as an ensemble representation. Our ensemble m is a collection of N. models m', with
i=1,2,..., Ne.

In place of the typical DA forecast forward modeling problem we have :
fi_ i
my = F(mj_,) (1)
We decompose the d,ps in K frequency bands — solve FWI independently on each of N models, at a given frequency

k.

Allowing to consider a dynamic axis in frequency, with k =1, ..., K instead of temporal evolution
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Scheme specificities

The EnKF scheme we follow : the Ensemble Transform Kalman Filter (ETKF) (Bishop et al., 2001).

We apply FWI in the frequency domain — complex wavefield data.

We consider all measurements as uncorrelated — measurement noise operator is diagonal whose values are calibrated
on the data noise level.
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ETKF-FWI Scheme

dobs , k

Mk—1

dobs, k+1

step

(modeling frequency)
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Application on a Synthetic Case
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Applying ETKF to FWI

Application on 2D Marmousi model :

o Fixed spread surface acquisition (144 sources, 660 receivers)
e Noisy signal (SNR = 5)
e 15 ETKF-FWI cycles from 3 to 10Hz.

e Initial gaussian repartition
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Applying ETKF to FWI
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Generating the initial ensemble

ETKF-FWI
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Applying ETKF to FWI
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Undersampling sensiti
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A wide range of variance values e

That high degree of variability makes qualitative comparison of off-diagonal terms difficult.

We propose to use the Correlation matrix Cj instead of the Covariance matrix to read the off-diagonal terms.

C7 . = (diag(P..))"V/2P? _(diag(P3..)) /2 o

This provides dimensionless and normalized correlation maps, regardless of N and location in the medium.
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Estimating local correlation m s
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Variance convergence test
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Velocity Log - Comparing ETKF-FWI with FWI
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Velocity Log - Comparing ETKF-FWI with FWI
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Velocity Log - Comparing ETKF-FWI with FWI

Depth (m)
N
S &
(=3 o
o o

ETKF-FWI

4500
4000
35009

3000

elocity (m,

25002
2000

1500
8000
7000
6000 &
@
5000
4000 £
[
g
3000 §
K
20003
1000

2000 4000 6000 8000 10000 12000 14000 16000
Offset (m)

Velocity log through the N, = 2000 ensemble.

500

1000

1500

Depth (m)

N
=
S
S

2500

3000

3500
1000

2000 3000 4000
Velocity (m/s)




Velocity Log - Comparing ETKF-FWI with FWI

Depth (m)
N
S &
(=3 o
o o

ETKF-FWI

4500
4000
35009

3000

elocity (m,

25002
2000

1500
8000
7000
6000 &
@
5000
4000 £
[
g
3000 §
K
20003
1000

2000 4000 6000 8000 10000 12000 14000 16000
Offset (m)

Velocity log through the N, = 2000 ensemble.

500

1000

1500

Depth (m)

N
=
S
S

2500

3000

3500

2000 3000 4000
Velocity (m/s)




Velocity Log - Comparing ETKF-FWI with FWI

Depth (m)
N
S &
(=3 o
o o

2000 4000 6000 8000 10000 12000 14000 16000
Offset (m)

4500
4000
35009

3000

elocity (m,

25002
2000

1500
8000
7000
6000 &
@
5000
4000 £
[
g
3000 §
K
20003
1000

Velocity log through the N, = 2000 ensemble.

ETKF-FWI

500

1000

1500

Depth (m)

N
=
S
S

2500

3000

3500

2000 3000 4000
Velocity (m/s)
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Conclusions
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Conclusions e

Uncertainty estimation is possible with ETKF-FWI.
Numerical experiments show:
e Very low Ne = dramatic underestimation of PZ
e Higher N, = stable approximation
e Variance underestimation = power-low trend
e Mean is preserved

e Possible local "collapse” : strong undersapling in shallow zones

Uncertainty estimation not absolute uncertainty.
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Perspectives e

Short term :

e Undersampling mitigation (inflation tests in progress).

e [nitial ensemble building.
Medium term :

e Real data application : Valhall 2D.

e Comparison with other methodologies.
Long term prospective work:

e Go beyond 2D frequency acoustic (3D, time domain, multiparameter...)
e Inversion parameters influence over uncertainty

e Sensor fusion (well log data, geophysical methods)
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