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LARGE-SCALE STRUCTURES 

Jupiter Great Red Spot

Gulf-stream rings

Motivation is to predict behaviour of geophysical flows at large scales



STATISTICAL EQUILIBRIUM 
THEORIES

Statistical equilibrium theories aim at predicting coherent large-
scale structures.

In statistical equilibrium theories, such a coherent coarse-grained 
structure is the most probable macrostate and it is defined by 
conserved quantities associated with all possible microstates. 

How to find those microstates? Using evolution of the dynamics.



ILLUSTRATION OF STATISTICAL EQUILIBRIUM 
THEORY ON QUASI-GEOSTROPHIC FLOW

qt = qx y � qy x � = q � h (x, y) 2 [0, 2⇡)⇥ [0, 2⇡)

   is the potential vorticity,    is the stream function,    
   is the orography,     is the Laplace operator.�

 q
h

Conserved quantities are

E = �1/2

Z
 (q � h)dxdyEnergy

Cf =

Z
f(q)dxdyCasimirs



DEFINITIONS

q(x, y)Microstate is 

Macrostate is defined by the probability density function
of having 

⇢(x, y,�)
q(x, y) = �

The coarse-grained or macroscopic vorticity is defined as

The most probable macrostate                   is the maximiser of  

S = �
Z

dxdyd�⇢ ln ⇢

subjected to satisfy conservations laws 

⇢⇤(x, y,�)

hq(x, y)i =
Z

�⇢d�



DIFFERENT STATISTICAL 
EQUILIBRIUM THEORIES

The QG model has an infinite number of conserved quantities: 

Energy 

Casimirs (with any smooth function)

When deriving a statistical equilibrium theory, one can only take 
into account some of these conserved quantities. Thus one needs 
to make a choice which of these is statistically relevant? 

E = �1/2

Z
 (q � h)dxdy

Cf =

Z
f(q)dxdy



ENERGY STATISTICAL THEORY
Assume that the only statistically relevant conserved quantity is 
energy

E = �1/2

Z
 (q � h)dxdy

Then the most probable macrostate is 

⇢⇤ = N�1 exp(��E)

The coarse-grained vorticity and stream function are

hqi = h h i = 0



ENSTROPHY STATISTICAL 
THEORY

Assume that the only statistically relevant conserved quantity is 
enstrophy (second order Casimir)

Then the most probable macrostate is 

The coarse-grained vorticity and stream function are

⇢⇤ = N�1 exp(�↵Z)

Z = 1/2

Z
q2dxdy

hqi = 0 h i = ���1h



ENERGY-ENSTROPHY 
STATISTICAL THEORY

Assume that the only statistically relevant conserved quantity are 
energy and enstrophy

E = �1/2

Z
 (q � h)dxdy Z = 1/2

Z
q2dxdy

Then the most probable macrostate is 

⇢⇤ = N�1 exp(��(Z + µE))

The coarse-grained vorticity and stream function are

hqi = µh i (µ��)h i = h



ASSUMPTION OF ERGODICITY

The coarse-grained or macroscopic vorticity is

S = �
Z

dxdyd�⇢ ln ⇢

subjected to satisfy conservations laws 

The most probable macrostate                   is the maximum of  ⇢⇤(x, y,�)

hq(x, y)i = lim
T!1

1

T

Z t0+T

t0

q(x, y, t)dt

Assumption of ergodicity is that

subjected to conservative dynamical evolution of q 

hq(x, y)i =
Z

�⇢⇤(x, y,�)d�



ARAKAWA DISCRETIZATIONS
qt = qx y � qy xThe QG model

qx y � qy x ⌘ (q y)x � (q x)y ⌘ ( qx)y � ( qy)x

Arakawa discretizations are classical 
finite difference schemes based on the 
following equivalent formulation of the 
right hand side 

Arakawa E discretisation (preserves energy E)

Arakawa Z discretisation (preserves enstrophy Z)

Arakawa EZ discretisation (preserves energy E and enstrophy Z)



COARSE-GRAINED FIELDS OBTAINED 
BY ARAKAWA DISCRETIZATIONS

Arakawa EZ Arakawa E Arakawa Z
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HAMILTONIAN PARTICLE-MESH METHOD 
(EULERIAN-LAGRANGIAN METHOD)

qt = qx y � qy x

� = q � h

d

dt
Xk = � @

@y
 (x, y, t)

��
(x,y)=(Xk(t),Yk(t))

d

dt
Yk = +

@

@x
 (x, y, t)

��
(x,y)=(Xk(t),Yk(t))

q(xi, yj , t) =
X

k

Qk�

✓
xi �Xk

r

◆
�

✓
yj � Yk

r

◆

+ =
ψψ

Q

i

q i
ψψi
q i

Xk
k

Yk

      
qi,j qi,j
 i,j  i,j

� = q � h



AREA PRESERVATION

We initialise K particles on 
a uniform grid with vorticity 

2⇡

Qk, k = 1, . . . ,K

time

2⇡                  2⇡

2⇡

Area associated with each     
is preserved over time under 
the divergent-free flow

Qk



LEVEL SETS OF VORTICITY

We initialise K particles on a uniform 
grid with vorticity 

2⇡

2⇡

Qk, k = 1, . . . ,K

Denote vorticity levels as �l

�l = Qk, l = 1, . . . , L, where L  K

Meaning that we can have Qk = Qk0

But we can’t have �l = �l0

An example could be 
Q1 = 1, Q2 = 1, Q3 = �1, Q4 = 1, Q5 = �1 (K = 5)

�1 = 1, �2 = �1 (L = 2)



PRIOR DISTRIBUTION

⇧l =
Kl�a2

(2⇡)2

Let’s denote      as the number of particles with vorticity levelKl �l

Then the area associated with     is �l

This area is also preserved as it trivially follows from area-
preservation of area associated with each Qk

Note that
X

l

⇧l = 1

We take      to be the prior distribution on vorticity⇧l



CONSERVATION PROPERTIES OF 
HPM

Area preservation of vorticity level sets

Energy conservation

Conservation of circulation (first order Casimir)

E = �1/2

Z
 (q � h)dxdy

C =

Z
qdxdy

⇧l =
Kl�a2

(2⇡)2



STATISTICAL THEORY BASED ON 
PRIOR
The most probable macrostate                   is the maximum of  

subjected to satisfy conservations laws of energy and circulation 

⇢⇤(x, y,�)

S = �
Z

dxdyd�⇢ ln
⇢

⇧

Then the most probable macrostate is 

⇢⇤ = N�1 exp[(��h i+ ↵)�]⇧

The coarse-grained vorticity and stream function are

hqi =
X

l

�l⇢
⇤(x, y,�l) �h i = hqi � h



COARSE-GRAINED FIELDS 
OBTAINED BY THE HMP METHOD
Fix energy and circulation. But change the prior.
Choose the prior      as normal distribution. Then the coarse-
grained fields are
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COARSE-GRAINED FIELDS 
OBTAINED BY THE HMP METHOD
We use the same values for energy and circulation. 
Choose the prior      as gamma distribution. Then the coarse-
grained fields are
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RELATION TO DATA 
ASSIMILATION 

By changing the prior we can obtain different coarse-grained 
fields by the HPM.

 We ask the following question: can data assimilation correct 
model error? Meaning that if we take the HPM model for the 
truth but an Arakawa model for the background, can data 
assimilation correct the model error? 

And moreover, are the conservation properties of an Arakawa 
model relevant for good estimations? 



EXPERIMENTAL SETUP

We derived observations from the HPM model with gamma prior distribution, since 
none of the Arakawa models are able to obtain such a non-linear behaviour no matter 
the initial conditions.

The observations were assimilated into

Arakawa EZ model (that preserves energy and enstrophy)

Arakawa E (that preserves energy) 

Arakawa Z (that preserves enstrophy)

As a data assimilation method we choose an Ensemble Kalman Filter with perturbed 
observations.



IS DATA ASSIMILATION 
CONSERVATIVE?
In general, data assimilation is non-conservative with a few exceptions:

particle fileters

conservation of linear properties by an EnKF without localisation

specially derived data assimilation methods that ensure 
conservation laws (e.g.  “The Maintenance of Conservative Physical 
Laws within Data Assimilation Systems” by Jacobs and Ngodock, 
2003;  “Conservation of mass and preservation of positivity with 
ensemble-type kalman filter algorithms” by Janjić et al, 2014)

http://journals.ametsoc.org/author/Jacobs%2C+G+A
http://journals.ametsoc.org/author/Ngodock%2C+H+E


COARSE-GRAINED FIELDS OBTAINED 
BY ARAKAWA DISCRETIZATIONS

Arakawa EZ Arakawa E Arakawa Z
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ASSIMILATION OF STREAM 
FUNCTION
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INSTANT ERRORS OBTAINED BY 
THE ENKF 
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LOCALIZATION AND INFLATION
Arakawa EZ Arakawa E Arakawa Z

Relevance of conservative numerical schemes for EnKF 7
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Figure 12. The contour plot of time-averaged stream function h i obtained by
assimilating observations of stream function without localisation nor inflation in
Arakawa EZ (a), Arakawa E (b), and Arakawa Z (c).

the first column of metrics of Table 1. We see that the true PDF
is skewed, while approximated PDFs are not for any Arakawa
scheme. This means that even though Arakawa EZ does not
estimate well small-scale behaviour, it does estimate well the
large-scale behaviour.

Next we study how localisation influences the EnKF
performance from statistical mechanics point of view. It was
observed in Figures 8–9 that correlations are negligible for
distances larger than 1 for potential vorticity and larger than 7
for stream function in �x units. In Figure 13 we show the time-
averaged RMSE of potential vorticity (a) and stream function
(b) as a function of localisation radius. For Arakawa EZ and
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Figure 13. The time-averaged RMSE of potential vorticity (a) and stream function
(b) obtained by assimilating observations of stream function using different
localisation radii in Arakawa EZ (solid line), Arakawa E (dashed line), and
Arakawa Z (dotted line).

Z optimal localisation radius in terms of the smallest RMSE of
potential vorticity is 2 and in terms of stream function is 10 and
8, respectively. For Arakawa E it is 8 in both cases. However, the
optimal localisation radius in terms of the smallest stream function
RMSE gives very poor estimation of the PDF, namely mean is -
0.88 for Arakawa EZ and -1.16 for Arakawa Z compared to the
true mean -0.32. Therefore we use the optimal localisation radius
in terms of the smallest PV RMSE. In second column of metrics
in Table 1 we give mean, standard deviation and skewness of
PDF for Arakawa discretisations with optimal localisation. With
or without localisation Arakawa E estimates poorly the PDF. For
Arakawa EZ mean is already well approximated by the EnKF
without localisation and localisation makes the approximation of
the mean only worse, which also happens for Arakawa Z. The
standard deviation, on the other hand, becomes underestimated
instead of overestimated for both Arakawa EZ and Z, which
highlights the need of inflation. Moreover it is interesting to note
that the skewness is improved with localisation for both Arakawa
EZ and Z. In Figures 14–15 we display scatter plot of time-
averaged fields and time-averaged stream function, respectively,
when localisation is applied. From Figure 14 we conclude that
even though the RMSE decreases when localisation is used for all
Arakawa discretisations, the true nonlinear statistical behaviour
can be reproduced by Arakawa EZ only.

Table 1. Mean, standard deviation and skewness of PDF of potential vorticity
for the true HPM method and for the Arakawa schemes obtained by
assimilating observations of stream function without localisation (first column
of metrics), and using optimal localisation radius (second column of metrics).

scheme mean std skewness

HPM -0.32 0.30 0.34
EZ -0.33 -0.36 0.99 0.18 -0.05 0.17
E -0.13 -5.27 6.18 1.57 0.06 2.26
Z -0.25 -0.47 1.53 0.19 0.08 0.47
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Figure 14. Same as Figure 11, but assimilating observations of stream function
using optimal localisation radius.
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Figure 15. Same as Figure 12, but assimilating observations of stream function
using optimal localisation radius.

In addition to localisation we employ inflation. The optimal
inflation factor p = 1.001 provides the smallest RMSE in terms
of potential vorticity for all Arakawa discretisations (not shown).
In Figure 16 we plot the time-averaged spread to RMSE ratio for
different inflation factors. It can be observed that while Arakawa
EZ and Z are reliable for the optimal inflation, Arakawa E is not
as it gives the ratio for potential vorticity close to zero. Moreover,
for p > 1.003 Arakawa E is unable to converge during implicit
midpoint integration. In Table 2 we show moments of PDF for the
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Figure 16. The time-averaged spread to RMSE ratio for potential vorticity (a) and
stream function (b) obtained by assimilating observations of stream function with
optimal localisation radius and different inflation factors in Arakawa EZ (solid line),
Arakawa E (dashed line), and Arakawa Z (dotted line).

optimal inflation factor. We conclude that Arakawa EZ provides
the best estimation of the true PDF in terms of not only the mean
and standard deviation but also skewness.

When observations of stream function are assimilated,
localisation and inflation improve estimation of the true PDF
while keeping the nonlinear statistical behaviour intact only for
Arakawa EZ, while for Arakawa Z it comes with a price of a shift

c� 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Table 2. Mean, standard deviation and skewness of PDF of potential vorticity
for the true HPM method and for the Arakawa schemes obtained by
assimilating observations of stream function using localisation and inflation.

scheme mean std skewness

HPM -0.32 0.30 0.34
EZ -0.37 0.29 0.48
E -5.27 1.70 1.99
Z -0.51 0.25 0.45

in nonlinear relation between time-averaged fields, though time-
averaged stream function is better approximated. For Arakawa E
neither localisation nor inflation improve estimation of the true
PDF nor of the true nonlinear statistical behaviour. This means
that the model error of Arakawa E is too large and assimilation of
observations of stream function is unable to compensate for this
error.

7.2. PV observations

In this section, we observe potential vorticity q from the HPM
method with � = 6 at every grid point, thus the operator H is equal
to [I O], where O is again the zero matrix of M2 ⇥M2 dimension
and I is the identical matrix of the same dimension. The standard
deviation of the observation error is again 1, thus R = I.

In should be noted that we were unable to carry out numerical
experiments without localisation as the filter diverges, thus in
Figure 17 we show the time-averaged RMSE of potential vorticity
(a) and stream function (b) as a function of localisation radius.
The optimal localisation radius in terms of the smallest RMSE of
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Figure 17. The time-averaged RMSE of potential vorticity (a) and stream function
(b) obtained by assimilating observations of potential vorticity using different
localisation radii in Arakawa EZ (solid line), Arakawa E (dashed line), and
Arakawa Z (dotted line).

both potential vorticity and stream function is 1 for all Arakawa
schemes, and all Arakawa schemes are now indistinguishable in
terms of the RMSE.

In Figure 18 we shows scatter plots of time-averaged fields
for Arakawa methods with optimal localisation. As it could be
expected from the RMSE shown in Figure 17, the approximated
time-averaged field relation (shown in grey) coincides with the
true one (shown in black) for any Arakawa scheme. Time-
averaged stream function obtained by the Arakawa schemes
shown in Figure 19 exhibit closed streamlines, which is in
agreement with the HPM method shown in Figure 5(b).

The moments of potential vorticity PDF at the grid point (3, 11)
are displayed in Table 3 in first column of metrics. While the mean
is well approximated by all Arakawa schemes, standard deviation
is underestimated, which indicates the necessity of ensemble
inflation. We obtained the optimal inflation factor in terms of the
smallest RMSE of potential vorticity being 1.04 for all Arakawa
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Figure 18. Same as Figure 11, but assimilating observations of potential vorticity
with localisation.
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Figure 19. Same as Figure 12, but assimilating observations of potential vorticity
with localisation.

discretisations (now shown). In Figure 20 we show the time-
averaged spread to RMSE ratio for potential vorticity (a) and
stream function (b) as a function of inflation factor. We see that all
Arakawa discretisations underestimate the spread for the optimal
inflation factor and they become reliable when the inflation factor
goes to 1.1.

Table 3. Mean, standard deviation and skewness of PDF of potential vorticity
for the true HPM method and for the Arakawa schemes obtained by
assimilating observations of potential vorticity using Gauss localisation
function without inflation (first column of metrics), and using optimal inflation
factor (second column of metrics).

scheme mean std skewness

HPM -0.32 0.30 0.34
EZ -0.32 -0.32 0.11 0.23 0.27 0.08
E -0.32 -0.32 0.15 0.27 0.18 0.00
Z -0.32 -0.32 0.10 0.23 0.27 -0.06
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inflation factor
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Figure 20. The time-averaged spread to RMSE ratio for potential vorticity (a) and
stream function (b) obtained by assimilating observations of potential vorticity with
optimal localisation radius using different inflation factors in Arakawa EZ (solid
line), Arakawa E (dashed line), and Arakawa Z (dotted line).

In second column of metrics in Table 3 we give moments
of PDF for Arakawa discretisations using optimal inflation.
We observe that now both mean and standard deviation are
well estimated but skewness becomes almost zero unlike in the
experiments without inflation, where skewness is estimated well

c� 2013 Royal Meteorological Society Prepared using qjrms4.cls



ASSIMILATION OF VORTICITY 
WITH LOCALISATION
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INSTANT ERRORS OBTAINED BY 
THE ENKF 
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THE PDF OF VORTICITY
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Table 2. Mean, standard deviation and skewness of PDF of potential vorticity
for the true HPM method and for the Arakawa schemes obtained by
assimilating observations of stream function using localisation and inflation.

scheme mean std skewness

HPM -0.32 0.30 0.34
EZ -0.37 0.29 0.48
E -5.27 1.70 1.99
Z -0.51 0.25 0.45

in nonlinear relation between time-averaged fields, though time-
averaged stream function is better approximated. For Arakawa E
neither localisation nor inflation improve estimation of the true
PDF nor of the true nonlinear statistical behaviour. This means
that the model error of Arakawa E is too large and assimilation of
observations of stream function is unable to compensate for this
error.

7.2. PV observations

In this section, we observe potential vorticity q from the HPM
method with � = 6 at every grid point, thus the operator H is equal
to [I O], where O is again the zero matrix of M2 ⇥M2 dimension
and I is the identical matrix of the same dimension. The standard
deviation of the observation error is again 1, thus R = I.

In should be noted that we were unable to carry out numerical
experiments without localisation as the filter diverges, thus in
Figure 17 we show the time-averaged RMSE of potential vorticity
(a) and stream function (b) as a function of localisation radius.
The optimal localisation radius in terms of the smallest RMSE of
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Figure 17. The time-averaged RMSE of potential vorticity (a) and stream function
(b) obtained by assimilating observations of potential vorticity using different
localisation radii in Arakawa EZ (solid line), Arakawa E (dashed line), and
Arakawa Z (dotted line).

both potential vorticity and stream function is 1 for all Arakawa
schemes, and all Arakawa schemes are now indistinguishable in
terms of the RMSE.

In Figure 18 we shows scatter plots of time-averaged fields
for Arakawa methods with optimal localisation. As it could be
expected from the RMSE shown in Figure 17, the approximated
time-averaged field relation (shown in grey) coincides with the
true one (shown in black) for any Arakawa scheme. Time-
averaged stream function obtained by the Arakawa schemes
shown in Figure 19 exhibit closed streamlines, which is in
agreement with the HPM method shown in Figure 5(b).

The moments of potential vorticity PDF at the grid point (3, 11)
are displayed in Table 3 in first column of metrics. While the mean
is well approximated by all Arakawa schemes, standard deviation
is underestimated, which indicates the necessity of ensemble
inflation. We obtained the optimal inflation factor in terms of the
smallest RMSE of potential vorticity being 1.04 for all Arakawa
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Figure 18. Same as Figure 11, but assimilating observations of potential vorticity
with localisation.
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Figure 19. Same as Figure 12, but assimilating observations of potential vorticity
with localisation.

discretisations (now shown). In Figure 20 we show the time-
averaged spread to RMSE ratio for potential vorticity (a) and
stream function (b) as a function of inflation factor. We see that all
Arakawa discretisations underestimate the spread for the optimal
inflation factor and they become reliable when the inflation factor
goes to 1.1.

Table 3. Mean, standard deviation and skewness of PDF of potential vorticity
for the true HPM method and for the Arakawa schemes obtained by
assimilating observations of potential vorticity using Gauss localisation
function without inflation (first column of metrics), and using optimal inflation
factor (second column of metrics).

scheme mean std skewness

HPM -0.32 0.30 0.34
EZ -0.32 -0.32 0.11 0.23 0.27 0.08
E -0.32 -0.32 0.15 0.27 0.18 0.00
Z -0.32 -0.32 0.10 0.23 0.27 -0.06
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Figure 20. The time-averaged spread to RMSE ratio for potential vorticity (a) and
stream function (b) obtained by assimilating observations of potential vorticity with
optimal localisation radius using different inflation factors in Arakawa EZ (solid
line), Arakawa E (dashed line), and Arakawa Z (dotted line).

In second column of metrics in Table 3 we give moments
of PDF for Arakawa discretisations using optimal inflation.
We observe that now both mean and standard deviation are
well estimated but skewness becomes almost zero unlike in the
experiments without inflation, where skewness is estimated well

c� 2013 Royal Meteorological Society Prepared using qjrms4.cls

First column without inflation. Second with inflation.



CONCLUSIONS

When assimilating observations of stream function the choice of 
a numerical model is crucial: the Arakawa EZ model that 
preserves both energy and enstrophy gives the best estimation. 
EnKF combined with Arakawa EZ estimates well the posterior 
mean, standard deviation and skewness.

When assimilating observations of vorticity, the choice of a 
numerical model is not that crucial anymore. The skewness, 
however, estimated worse than when assimilating observations of 
stream function. Moreover, inflation deteriorates skewness 
estimation even more.




