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EARGESC AL STRUC FLIRES

Motivation is to predict behaviour of geophysical flows at large scales

Jupiter Great Red Spot

Gulf-stream rings



SEALISTC AL OV IBRIUIM
FTHECIRIES

Statistical equilibrium theories aim at predicting coherent large-
scale structures.

In statistical equilibrium theories, such a coherent coarse-grained
structure is the most probable macrostate and it is defined by
conserved quantities associated with all possible microstates.

How to find those microstates? Using evolution of the dynamics.



b WUSTRATICOINECIE S S FIC AL ROIUNIBRIEIN
THEORY ON QUASI-GEOSTROPHIC FLOW

Q= way ST Qywx Alb =l h (377 y) = [Ov 27T) X [07 27T)

q is the potential vorticity, ¢ is the stream function,
his the orography, A is the Laplace operator.

Conserved guantities are

Energy F = —1/2/¢(q — h)dxdy

Casimirs C¥y :/f(q)d:z;dy



DEFINITIONS

Microstate is q(fL‘, y)

Macrostate is defined by the probability density function p(z,y, o)
of having ¢(z,y) = o

The coarse-grained or macroscopic vorticity is defined as

(q(z,y)) = /Opda

The most probable macrostate p*(x,y, o) is the maximiser of

— —/dxdydaplnp

subjected to satisfy conservations laws



FHEREREINE S PATISTIC AL
EQUILIBRIVM LHEORIES

The QG model has an infinite number of conserved quantities:

Energy F = —1/2/¢(q — h)dxdy

Casimirs (with any smooth function) Cy = /f(q)da:dy

When deriving a statistical equilibrium theory, one can only take
into account some of these conserved quantities. Thus one needs
to make a choice which of these is statistically relevant?



EPIERCEY STATMSTIC AL [HELIRY

Assume that the only statistically relevant conserved quantity is
energy

B —1/2/¢(q — h)dxdy
Then the most probable macrostate is

g = N expl - E)
The coarse-grained vorticity and stream function are

Gl e



NS ERCIEY S EARISTIC AL
FTHECIRY

Assume that the only statistically relevant conserved quantity is
enstrophy (second order Casimir)

— 1/2/q2dmdy
Then the most probable macrostate is

p* =N 'exp(—aZ)

The coarse-grained vorticity and stream function are

=8 N



ENERGY-ENSTROPHY
SIALB HICALEHEORY

Assume that the only statistically relevant conserved quantity are
energy and enstrophy

Hp— —1/2/¢(q—h)dwdy e 1/2/q2d:z:dy

Then the most probable macrostate is

p* = N~ exp(—B(Z + pE))

The coarse-grained vorticity and stream function are

@) =) (w=A8) ) =h



ASSUMPTION CIF BRGCHIICTERY

The most probable macrostate p*(x,y, o) is the maximum of

Sy —/da:dydaplnp

subjected to satisfy conservations laws

The coarse-grained or macroscopic vorticity is

(a(z,y)) = /Op*(x,yav)dv

Assumption of ergodicity is that

1 to+1'
) = Jim 7 [ oty

subjected to conservative dynamical evolution of g



ARAKAWA DISCRETIZATIONS

— -
1-1 1+1
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The QG model ¢t = @z, — @y ¥

Arakawa discretizations are classical
finite difference schemes based on the
following equivalent formulation of the
right hand side

Q:Ewy e Qywx — (qu)az s ((J%)y = (wa)y e (¢Qy)x

Arakawa E discretisation (preserves energy E)

Arakawa Z discretisation (preserves enstrophy Z)

Arakawa EZ discretisation (preserves energy E and enstrophy Z)



CLOOARSE-GRAINED) FIELLS OB TAIN

BY ARAKAWA DISCRETIZATIONS

Arakawa EZ Arakawa E Arakawa Z

(b= A) () =h (%) =0 () = —A~1h




HAMILTONIAN PARTICLE-MESH METHO
(EULERIAN-LAGRANGIAN METHOD)

Gt = QuWy — Qs

di,j Qi,j*’/ Aw 7 q z h
Vi j Yiy
q(Ti,y; t):ZQk¢< r )gb( : r )
k
Ah=q—h
d 9,
%Xk = _a_yw(xa?ﬁt)l(x y)=(Xk(t),Yx(2))
d 0
E e axw(x yat)‘(x yY)=(Xg(t),Yr(t))




AREA PRESERVATION
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WVe initialise K particles on Area associated with each Q%
a uniform grid with vorticity is preserved over time under
Gk, k=1,..., K the divergent-free flow



PV SETS U VEIREICHE T

We initialise K particles on a uniform
grid with vorticity Qx, k=1,..., K

Denote vorticity levels as o;
o= Cpli="1T 7+ F. swhere I < K

2 Meaning that we can have Qr = Qg

But we can’t have o; = oy

An example could be

Qi=1 Q2=1, Q3=-1, Qu=1, @5 =—-1 (K =5)
gii=1ido = = kil =2



PRIOR DISTRIBUTION

Let’s denote K as the number of particles with vorticity level o

Then the area associated with o is
K, Aa?
g Ly
(2m)=

This area is also preserved as it trivially follows from area-
preservation of area associated with each Q¢

Note that ZHz — |
z

We take 1I; to be the prior distribution on vorticity




CONSERVATICIN PROPER 1ES (JF
Y

KZACLQ
(27)°
Energy conservation E = —1/2/¢(q — h)dxdy

Area preservation of vorticity level sets 1I; =

Conservation of circulation (first order Casimir) C = /qdazdy



SEAdISTIC AL BEIECIRY BAGELT LN
PRIOR

The most probable macrostate p*(x,y, o) is the maximum of
) —/dazdydap i 5
11
subjected to satisfy conservations laws of energy and circulation

Then the most probable macrostate is

p* = N~ exp[(—B(¢) + a)o]lI

The coarse-grained vorticity and stream function are

@)= ot (@ y0) AW =(g)—h
[



COARSE-GRAINED FIELDS
COBLAINELD B HHE BPE ME e

Fix energy and circulation. But change the prior.
Choose the prior II; as normal distribution. Then the coarse-
grained fields are
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COARSE-GRAINED FIELDS
COBLAINELD B HHE BPE ME e

We use the same values for energy and circulation.
Choose the prior II; as gamma distribution. Then the coarse-
grained fields are
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RELASHCHN 10 LA A
ASSIMILATION

By changing the prior we can obtain different coarse-grained
fields by the HPM.

We ask the following question: can data assimilation correct
model error! Meaning that if we take the HPM model for the
truth but an Arakawa model for the background, can data
assimilation correct the model error!?

And moreover, are the conservation properties of an Arakawa
model relevant for good estimations!?



EXEERAIE VI S LI

We derived observations from the HPM model with gamma prior distribution, since
none of the Arakawa models are able to obtain such a non-linear behaviour no matter
the initial conditions.

The observations were assimilated into
Arakawa EZ model (that preserves energy and enstrophy)
Arakawa E (that preserves energy)
Arakawa Z (that preserves enstrophy)

As a data assimilation method we choose an Ensemble Kalman Filter with perturbed
observations.



S DATA ASSIMILATION
CONSERVATIVE!

In general, data assimilation is non-conservative with a few exceptions:

particle fileters
conservation of linear properties by an EnKF without localisation

specially derived data assimilation methods that ensure
conservation laws (e.g. ““The Maintenance of Conservative Physical
Laws within Data Assimilation Systems” by Jacobs and Ngodock,
2003; “Conservation of mass and preservation of positivity with
ensemble-type kalman filter algorithms” by Janjic et al, 2014)


http://journals.ametsoc.org/author/Jacobs%2C+G+A
http://journals.ametsoc.org/author/Ngodock%2C+H+E

CLOOARSE-GRAINED) FIELLS OB TAIN

BY ARAKAWA DISCRETIZATIONS

Arakawa EZ Arakawa E Arakawa Z




ASSIMHATICIN OF S TREAN
FUNCTION

Arakawa EZ Arakawa E Arakawa Z
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INSTANT ERRORS OBTAINED BY
THE ENKF
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| OCALIZATION AND INFLATION

Arakawa EZ Arakawa E Arakawa Z
(a) (b) (c)
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scheme mean std skewness

HPM -0.32  0.30 0.34
EZ -0.37 0.29 0.48
E -5.27  1.70 1.99
Z -0.51  0.25 0.45




A ATFICIN OENVOR FCTEY
WHEHLH EOCALISATION
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INSTANT ERRORS OBTAINED BY
THE ENKF
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TP IR LI VIIRGIC L ]

scheme mean std skewness
HPM -0.32 0.30 0.34

EZ -0.32-0.32 0.110.23 0.27 0.08
E -0.32-0.32 0.150.27 0.18 0.00
% -0.32-0.32 0.100.23 0.27 -0.06

First column without inflation. Second with inflation.



COONCA USICONDS

When assimilating observations of stream function the choice of
a numerical model is crucial: the Arakawa EZ model that
preserves both energy and enstrophy gives the best estimation.
EnKF combined with Arakawa EZ estimates well the posterior
mean, standard deviation and skewness.

When assimilating observations of vorticity, the choice of a
numerical model is not that crucial anymore. The skewness,
however, estimated worse than when assimilating observations of
stream function. Moreover, inflation deteriorates skewness
estimation even more.





