Hybrid Sparse Dictionary Construction Using K-SVD and DCT for History Matching by ES-MDA

May 30, 2018

Sungil Kim and Baehyun Min

Department of Climate and Energy Systems Engineering

Ewha Womans University

Contents

1. Introduction

2. Literature review

3. Methodology

4. Results & Discussion

5. Conclusions

Introduction (inverse modeling)

f(m) = d or d = f(m)

m: reservoir parameters

d: simulation responses

f: a reservoir simulator

Limited information with measurement error and expensive cost

Reliable inverse modeling

Permeability

Introduction (ensemble-based methods)

Objective function

$$J(m) = \underbrace{\left(m - m^b\right)^T B^{-1} \left(m - m^b\right) + \left(d^{obs} - d\right)^T R^{-1} \left(d^{obs} - d\right)}_{J_o, \, Observation \, term} \quad m = m^b + K(d_{unc} - d(m^b))$$
*Assuming Gaussian dist.
$$K = C_{md}(C_{dd} + \alpha C_D)^{-1}$$
(Emerick and Reynolds, 2013; Chen and Oliver, 2013)

m: state vector (model realization)

m^b: state vector before update

B: covariance matrix of m^b

d: simulated response of a state vector

dobs: observation data

 d_{unc} : perturbed observed data

R: covariance matrix of observation error

 $\alpha\text{:}$ inflating coefficient of C_D

Transformation of parameters of a channel reservoir

- Distribution modification
 - Normal Score Transformation (Shin et al. 2010)
 - Level Set (Lorentzen et al., 2013)
- **♦** Image process
 - Discrete Cosine Transform (DCT) (Jafarpour and McLaughlin, 2007)
- **♦** Learning algorithm
 - K-Singular Value Decomposition (K-SVD) (Kreutz-Delgado et al., 2003; Aharon et al., 2006)

DCT and IDCT application

K-SVD for a geological dictionary

Procedures of K-SVD

Y: a library

Y': a reconstructed library

 d_i^r : a column vector of dictionary D

 X_i : a row vector of weights matrix X

 $N_{
m dict}$: number of dictionary realizations

 E_j : error of all members except $d_j^r x_j$

 Ω_j : selecting out non-zero components

$$\mathbf{D} = \begin{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_{N_{\text{dict}}} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_{N_{\text{dict}}} \end{bmatrix}$$

$$N_{\text{grid}} \text{ by } N_{\text{dict}}$$

$$N_{\text{dict}} \text{ by } N_{\text{lib}}$$

$$\underline{X_1} = \begin{bmatrix}
N_{\text{grid}} \text{ by } N_{\text{lib}} \\
\end{bmatrix} \qquad X_j \qquad \Omega_j \\
(2 \quad 0 \quad 4) \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 \end{pmatrix}$$

Literature review

- Aharon et al. (2006): showed the efficacy of **K-SVD** in image reconstruction.
- Li and Jafarpour (2010): extracted essences of geologic features in **DCT** domain.
- Liu and Jafarpour (2013): investigated coupling effects of **DCT** and **K-SVD** for representations of facies connectivity and flow model calibration.
- Sana et al. (2016): built geologic dictionaries from thousands of static reservoir models using **K-SVD** and updated models by **EnKF**
- Proposed method: geologic dictionary update based on DCT and K-SVD in each assimilation of ES-MDA

Methodology (Update of a dictionary in ES-MDA)

Methodology (Overall procedure)

Experimental setting

Reservoir parameter	Value
Number of gridblocks in the x-direction (N_x) [dimensionless]	75
Number of gridblocks in the y-direction (N_y) [dimensionless]	75
Number of gridblocks in the z-direction (N_z) [dimensionless]	1
Grid size [ft³]	200×200×100
Initial gas saturation [fraction]	0.75
Initial water saturation [fraction]	0.25
Initial reservoir pressure [psia]	3,000
Porosity [fraction]	0.2
Permeability of sand facies [md]	300
Permeability of shale facies [md]	0.1

Well parameter	Value				
Observed well data	Gas rate and BHP				
Maximum well gas production rate [Mscf/day]	15,000				
Minimum well BHP [psia]	1,000				
Total simulation period [day]	7,000				
History matching period [day]	3,500				
Prediction period [day]	3,500				
Coordinates of well locations in sand facies	(14, 14), (62, 14), (30, 30), (46, 30), (14, 46), (62, 46), (30, 62), (46, 62)				
Coordinates of well locations in shale facies	(30, 14), (46, 14), (14, 30), (62, 30), (30, 46), (46, 46), (14, 62), (62, 62)				

Dictionaries in each assimilation by the proposed method

Updated ensemble samples from five methods

Gas rate of the updated ensemble

Reference reservoir model

Water rate of the updated ensemble

Reference reservoir model

Computation time and error of five methods

ES-MDA algori	S-MDA algorithm Computational costs [min.]						Only for
(a) ES-MDA			0.0 constru			 Only for ction of dictionaries 	
(b) ES-MDA+DCT			0.0				
c) ES-MDA+K-SVD				218.	0		
(d) ES-MDA+DCT+K-SVD				5.7			
(e) ES-MDA+DCT+i-K-SVD			21.4 (=5.7+15.7)			_	
EG MDA alasa dasa	Gas rat	e (HM)	Water ra	ite (HM)	BHP (HM)		Only for
ES-MDA algorithm	μ (%)	σ (%)	μ (%)	σ (%)	μ (%)	σ (%)	8 wells on sand
ES-MDA	46.36	122.66	15.58	8.38	55.84	27.85	-
ES-MDA+DCT	194.92	257.50	4.11	2.52	99.01	67.86	Initial ensemble
ES-MDA+K-SVD	11.81	34.84	5.06	2.94	27.72	29.78	100% error
ES-MDA+DCT+K-SVD	5.75	54.73	4.52	4.51	68.11	73.71	
ES-MDA+DCT+i-K-SVD	0.99	1.69	5.26	2.40	39.36	16.54	_
	Gas rate (PD)		Water rate (PD)		BHP (PD)		
	μ (%)	σ (%)	μ (%)	σ (%)	μ (%)	σ (%)	
ES-MDA	37.00	48.75	0.53	0.05	27.85	27.70	
ES-MDA+DCT	134.11	151.63	0.56	0.04	47.83	30.78	
ES-MDA+K-SVD	25.98	16.08	0.10	0.01	8.13	11.79	
ES-MDA+DCT+K-SVD	22.91	33.58	0.13	0.01	12.84	14.48	
ES-MDA+DCT+i-K-SVD	24.61	13.39	0.19	0.01	13.15	3.54	

Conclusions

- 1. This study proposed a framework of ES-MDA coupled with DCT and K-SVD.
- 2. This study updated geologic dictionaries with qualified reservoir models considering dynamic observed data during each assimilation of ES-MDA.
- 3. The proposed method remarkably reduced computational cost and complexity.
- 4. ES-MDA+DCT+i-K-SVD worked properly and gave overall enhanced performance in terms of channel properties and prediction of productions.

References

- Aharon, M., Elad, M., Bruckstein, A., 2006. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE.
 T. Signal Proces. 54 (11), 4311–4322.
- Chen, Y., Oliver, D.S., 2013. Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. 17 (4), 689–703
- Emerick, A.A., Reynolds, A.C., 2013. Ensemble smoother with multiple data assimilation. Comput Geosci. 55 (2013), 3–15.
- <u>Kim, S.</u>, Min, B., Lee, K., Jeong, H., 2018. Integration of an iterative update of sparse geologic dictionaries with ES-MDA for history matching of channelized reservoirs. Geofluids (May 2018, Accepted)
- Li, L., Jafarpour, B., 2010. Effective solution of nonlinear subsurface flow inverse problems in sparse bases. Inverse Probl. 26 (10), 1–24.
- Liu, E., Jafarpour, B., 2013. Learning sparse geologic dictionaries from low-rank representations of facies connectivity for flow model calibration. Water Resour. Res. 49 (10), 7088–7101.
- Sana, F., Katterbauer, K., Al-Naffouri, T.Y., Hoteit, I., 2016. Orthogonal matching pursuit for enhanced recovery of sparse geological structures with the ensemble Kalman filter. IEEE. J. Sel. Top Appl. 9 (4), 1710–1724.
- Shin, Y., Jeong, H., Choe, J., 2010. Reservoir characterization using an EnKF and a non-parametric approach for highly non-Gaussian permeability fields. Energ. Source Part A. 32 (16), 1569–1578.

Q & A

Thank you for your attention

Sungil Kim

kim@cerfacs.fr

kimsnu@ewha.ac.kr

Acknowledgements

We are thankful for support by KOGAS