Adaptive covariance inflation
in the EnKF
by Gaussian scale mixtures

Patrick N. Raanes, Marc Bocquet, Alberto Carrassi
patrick.n.raanes@gmail.com

© Norarorsk (Jff TRIS & :‘

€DF

EmbIA

)

K%,

O

ParisTech

EnKF Workshop, Bergen, May 2018



Questions ~answered in paper



Questions ~answered in paper

m Nonlinear models cause sampling error.



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?

m Can it be dissociated from non-Gaussianity?



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?

m Can it be dissociated from non-Gaussianity?

m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?
m Can it be dissociated from non-Gaussianity?

m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause
m collapse ?



Questions ~answered in paper
m Nonlinear models cause sampling error.
m Why and how?
m Can it be dissociated from non-Gaussianity?
m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause
m collapse ?
m divergence ?



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?
m Can it be dissociated from non-Gaussianity?
m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause
m collapse ?
m divergence ?

m Other reasons for inflating in nonlinear contexts.



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?

m Can it be dissociated from non-Gaussianity?

m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause
m collapse ?

m divergence ?
m Other reasons for inflating in nonlinear contexts.

m Linear models attenuate sampling error. How?



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?
m Can it be dissociated from non-Gaussianity?
m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause
m collapse ?
m divergence ?

m Other reasons for inflating in nonlinear contexts.

Linear models attenuate sampling error. How?

m Is the covariance factor ﬁ optimal?



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?

m Can it be dissociated from non-Gaussianity?

m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause
m collapse ?

m divergence ?

m Other reasons for inflating in nonlinear contexts.

Linear models attenuate sampling error. How?
m Is the covariance factor ﬁ optimal?

m How does localization affect inflation ?



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?

m Can it be dissociated from non-Gaussianity?

m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause
m collapse ?

m divergence ?
m Other reasons for inflating in nonlinear contexts.
m Linear models attenuate sampling error. How?
m Is the covariance factor ﬁ optimal?
m How does localization affect inflation 7

m How should inflation be defined as a parameter,
rather than just a target statistic?



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?

m Can it be dissociated from non-Gaussianity?

m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause
m collapse ?

m divergence ?
m Other reasons for inflating in nonlinear contexts.
m Linear models attenuate sampling error. How?
m Is the covariance factor ﬁ optimal?
m How does localization affect inflation 7

m How should inflation be defined as a parameter,
rather than just a target statistic?

m How does the feedback of the EnKF-N compare to “unbiased” updates.



Questions ~answered in paper

m Nonlinear models cause sampling error.
m Why and how?

m Can it be dissociated from non-Gaussianity?

m Does the inherent bias (E[tr(f’“)] < tr(Pa)) cause
m collapse ?

m divergence ?
m Other reasons for inflating in nonlinear contexts.
m Linear models attenuate sampling error. How?
m Is the covariance factor ﬁ optimal?
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m How should inflation be defined as a parameter,
rather than just a target statistic?

m How does the feedback of the EnKF-N compare to “unbiased” updates.
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Idealistic contexts (EnKF-N)

Assume M, H, Q, R are perfectly known,

and p(x) and p(y|x) are always Gaussian.



EnKF

M(.)+ noise
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Denote yprior all prior information on the “true” state, x € RM,
and suppose that, with known mean (b) and cov (B),

p(x|Yprior) = N(z|b,B). (1)

Computational costs induce:

~pzlE) = // N (z|b, B) p(b, BIE) dbdB

— “true” moments, b and B, are unknowns,

to be estimated from E.

Ensemble E = [ml, cee Ty . :vN} also from (1) and iid.
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But

p@lB) = [ [ N(@b.B)pd.BE) BB ()
B RM
Recover standard EnKF by assuming N=00 so that

p(b,B|E) =46(b—Z)6(B — B),

where
1 & _ 1 -
az:ﬁnzz:lmn, B:ﬁ;(mn—m)(azn—x) . (3)

The EnKF-N does not make this approximation.
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Prior:  p(x|E) = / / N(z|b,B) p(b,BIE)dbdB (4

x [ M@= al.,5l0.0) p(alE) da

a>0
(5)
5 N (x|, a(2)B) p(a(z)[E) (6)
< (14 yle-als) @

Posterior:  p(z|E,y) x p(z|E) N (y/Hz,R) (8)



Mixing distributions — p(«| .. .)

s Prior
=== Posterior
Likelihood

pdf

Prior: p(a|E) = X *(all, N-1)
Likelihood:  p(xy,y|a, E) o< exp (—%Hy—HaE||Z6NHBHT+R)

= Posterior: p(x4, a|y,E) o« exp (—%D(a})
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Summary — Perfect model scenario

m Even with a perfect model, Gaussian forecasts, and a
deterministic EnKF, “sampling error” arises for N < oo due to

nonlinearity, and inflation is necessary.

m Not assuming B = B as in the EnKF leads to a Gaussian

scale mixture.

m This leads to an adaptive inflation scheme, nullifying the need
to tune the inflation factor, and yielding very strong
benchmarks in idealistic settings.

m Excellent training for EnKF theory.

Especially general-purpose inflation estimation.



With model error

Because all models are wrong.
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Fundamentals

m Suppose z,, ~ N (b,B/f), and N = cc.

Then there's no mixture, but simply

(|8, E) = N (z|z, fB) . (9)
= Recall
p(ylz) = N(y[Hz,R).
= Then
p(y|8) = N (y |HZ,C(8)) = N'(6|0,C(8)),
where  C(8)=(HBH' + R,

) =
B

— Hz. (10)
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ETKF adaptive inflation

m Again,
p(y|B) =N (8]0,C(8)), (11)

where  C(3)=FHBH' + R~ 33" . (12)

m "yielding” (Wang and Bishop, 2003)
5o IBlR/P 1
52
where P = length(y) and 5% = tr(HBH'R™!)/P.

9

m Also considered: S, Bugpt. Scq) ML, VB (EM).
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Renouncing Gaussianity

m Assume HBH' x R.
m The likelihood p(y|8) = N (8]0, C(8)) becomes

pylB) o« X 2(|8R/P| (1 +%8),P).  (13)

Surprise !l argmax p(y|5) = Br.,
m A further approximation is fitted:

p(ylB) = X (BrlIB. 7). (14)

Likelihood (14) fits mode of (13). Fitting curvature = ©
= same variance as in Miyoshi (2011) !!!

m Likelihood (14) conjugate to p(B) = X ~2(B|8f, V), yielding
=140, (15)
B2 = (vV'6"+ 0pr) /v, (16)

again, as in Miyoshi (2011).
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EAKF adaptive inflation

m Anderson (2007) assigns Gaussian prior:

p(B) = N(B|5,, V), (17)

m and fits the posterior by a “Gaussian”:
p(Blyi) = N (B|Buar, V?), (18)

where BMAP and V2 are fitted using the exact posterior
(“easy” by virtue of serial update).

m Gharamti (2017) improves via X2 and X2 (Gamma).
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EnKF-N hybrid

m Use two inflation factors: « and S,
dedicated to sampling and model error, respectively.

m For 3, pick simplest (and ~best) scheme: BR.

m Algorithm:

Find 8 (via fRr)
Find « given 3 (via EnKF-N)
m Potential improvements:

m Determining («, 8) jointly (simultaneously).

m Rather than fitting the likelihood parameters, fit posterior
parameters (similarly to EAKF).

m Matching moments via quadrature

m Non-parametric (grid- or MC- based)

m De-biasing Br

Testing “improvements” did not yield significant gains.
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Example snapshots

i
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[llustration of time series

—— Inflation === RMS Error === RMS Spread
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Summary

Paper highlights:
m Cataloguing of reasons to inflate.
m Inflation-centric re-derivation of the dual EnKF-N.
m Formal survey of adaptive inflation methods.

m A simple hybrid of EnKF-N and BR, which is shown to
systematically (but moderately) improve filter accuracy (no

re-tuning!).
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Abstract—This _article presents a new multiple state-
partitioning solution to the Bayesian smoothing problem in
nonlinear high-dimensional Gaussian systems. The key idea
is to partition the original state into several low-dimensional
subspaces, and apply an individual smoother to each of them.
The main goal is to reduce the state dimension each filter has
to explore, to reduce the curse of dimensionality and eventual
loss of accuracy. We provide the theoretical multiple smoothing
formulation and a new nested sigma-point approximation to
the resulting smoothing solution. The performance of the new
approach is shown for the 40-dimensional Lorenz model.

L. INTRODUCTION

In general, we are interested in nonlinear Gaussian state-
space models (SSM), which are expressed as
Vi1 ~ N(0,Qi1), (D)
ni ~ N(0,Ry), 2

X = foa (k1) + Vi1
vi = hi(xg) +np

where x; € R" are the hidden states of the system,
yi € R™ the measurements at time k, fi_;(-) and hy(-)
are the nonlinear process and measurement functions, and
both Gaussian noises are assumed to be independent. The
Bayesian smoothing solution is given by the marginal distri-

edu, angel.garcia-fer Lac.uk

) functions

with x; =[x} The subspace proce
£,() can be different and lhc lndtptndtnl s-th subspace
noise is vi”, ~ A’(0,QL”,). The main
idea is to partition the original state in several \ub~paccs, and
apply a low dimensional individual filter to each subspace,
directly reducing the dimension each filter must explore. In this
approach, we are interested in the subspace marginal smoothed
posterior, p(x;”[y1.). In the multiple state-partioning frame-
work, we make the approximation that the different subspaces
are independent, which is typically accurate in applications
such as multiple target tracking. Mathematically, this implies
that the joint smoothing posteior is P xyn) =
Py ;\«)p(xk )|y1.n). In this contribution we extend
previous res n MQKF [11] to the smoothing problem,
and propose a new nested sigma-point approximation to the
smoothing marginal posterior integrals.

II. MULTIPLE GAUSSIAN SMOOTHING
A. Background on Multiple Gaussian Filtering

As done in standard Bayesian filtering, the s-th subspace
posterior can be recursively computed in two steps: prediction
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Parametric distributions — Table

Table 2: Parametric probability distributions. As elsewhere in the paper, b,z € R™, B,S € B, 5,8 > 0, and it is assumed that
- T(EEM o2 € )

v > M. The constants are cx = (2m) " M/2, ¢, = (W)‘E,,,fr(zm, W = TR and ¢y = cw with M = 1. The (unlisted)

variance of element (,7) of B with the Wishart distribution is (s3; + siis;;) /v, where s;; is element (4, ) of 8. The variances of

the inverse-Wishart distribution are asymptotically, for v — oo, the same.

Name Symbol Probability density function Mean Mode (Co)Var
Gauss./Normal N (z|b, B) :cN\Brl“exp (*%H:L‘*b“é) b b B

t distribution t(z|v;b,B) =c; B2 (14 L)z - ng) —An2 b 5B
Wishart WHL(B(S,v) = cy|S| /2 B|“ M D/2e-tuBSTH/2 g Mg

Inv-Wishart ~ W'(B[S,v) = cn|S|/?|B[ M RmutsB™ 2 v g x5

Chi-square X*“’(ﬂ\s, V) =cy 87”/2/3’//27167”‘7/23 s ”T_Zs 232/1/
Ivchisq X “2(Blsy) = oxs2p/i el N




Property 1 The (“scaled”) chi-square distribution is
equivalent to the Gamma distribution:

X*2(8ls,v) = Gamma™ (8|v/2,vsT1/2), (70)

where the switch sign + has been used to represent
both the regular and inverse distributions. The X
parameterization has been preferred for the notational
simplicity of the relations of Properties 2 to 4.

Property 2 Asymptotic normality. If 8 ~ X**(s,v),
then the distribution of /(8 — s) converges to N'(0, 2s?)
as v — oo. This shows that s is a location parameter,
while 2s2/v plays the role of variance, which is why
this paper prefers referring to v as “certainty” instead of
“degree of freedom”. The asymptotic result for X *2 is a
well known consequence of the central limit theorem, since
B may then be written as an average of random variables.
The result for X’2 is less known, but can be shown by
through the pointwise convergence of the pdf of y/v(3—s),
normalized by its value at 0.

Property 3 In the univariate case (M = 1),

WH(8]s,v) = XF2(B|s,v). (71)

Parametric distributions — Properties

Property 4 Reciprocity. If t =1/8:

P(8) = X"*(85,)
= pl) = X*A(U/5.). (72)

Property 5 Reciprocity. If T =B~
p(B) =W~ (BIS,»)
<« p(T) = WH(T|S™!,v), (73)
as follows by the change of variables and the Jacobian

||~ ™*D [Muirhead, 1982, §. 2.1].

Property 6 Let u # 0 be any m-dimensional vector, or
an (almost never zero) random vector. If T ~ W+(S,v)
is independent of u, then

u"Tu

uTSu

~ X p). (74)

Moreover, this statistic is also independent of w. Proof:
Theorem 3.2.8 of Muirhead [1982].
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EnKF-N mixing distribution

Instead, we assign the Jeffreys (hyper)prior:

p(b,B) x p(B) o |B|~MFV/2, (19)
and recall the likelihood:
N
p(Eb,B) < [[ N(2|b,B), (20)
n=1
yielding
p(b,BIE) = N (b|Z,B/N) W '(B|B,N-1) , (21)
p(b|B.E) p(B|E)

where W1 is the inverse-Wishart distribution (c.f. Table 2).
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