Ensemble based and implicit cross-correlations in coupled data assimilation

Patrick Laloyaux, Sergey Frolov (NRL), Benjamin Ménétrier (Météo-France) and Massimo Bonavita

Earth system modelling at ECMWF

To produce global numerical weather forecasts

- medium-range (9km/0.25 degree resolution)
- monthly
- seasonal

Complexity of the Earth system model has increased with time

- to improve the medium-range forecasts (better modelling of relevant processes)
- to extend the prediction horizon (monthly and seasonal)

Atmosphere-ocean coupling in medium-range forecasts

Tropical cyclone Neoguri

K Mogensen et al. ECMWF Newsletter No. 154

Coupled atmosphere-ocean assimilation system (CERA)

Coupled atmosphere-ocean assimilation system (CERA)

Iterative process where the ocean and the atmosphere converge towards a consistent coupled state

$$\begin{bmatrix} x^0 \\ x^0 \end{bmatrix} = \begin{bmatrix} x^b \\ x^b \end{bmatrix}$$

for k=0,1,... do

Compute observation departures

$$\begin{bmatrix} \delta \mathbf{y}^{\mathbf{k}} \\ \delta \mathbf{y}^{\mathbf{k}} \end{bmatrix} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} - \begin{bmatrix} \mathcal{H} \\ \mathcal{H} \end{bmatrix} \mathcal{M}(\mathbf{x}^{\mathbf{k}}, \mathbf{x}^{\mathbf{k}})$$

Compute increments

$$\delta \mathbf{x}^{\mathbf{k}} = (\mathbf{x}^{\mathbf{b}} - \mathbf{x}^{\mathbf{k}}) + \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}\delta \mathbf{y}^{\mathbf{k}}$$

$$\delta \mathbf{x}^{\mathbf{k}} = (\mathbf{x}^{\mathbf{b}} - \mathbf{x}^{\mathbf{k}}) + \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}\delta \mathbf{y}^{\mathbf{k}}$$

Update initial condition

$$\begin{bmatrix} \mathbf{x}^{k+1} \\ \mathbf{x}^{k+1} \end{bmatrix} = \begin{bmatrix} \mathbf{x}^{k} \\ \mathbf{x}^{k} \end{bmatrix} + \begin{bmatrix} \delta \mathbf{x}^{k} \\ \delta \mathbf{x}^{k} \end{bmatrix}$$
end

separate background error to compute the atmospheric and the ocean increments

A single observation experiment (CERA)

 \rightarrow Ocean increment from the ocean observation is propagated in the atmosphere

 \rightarrow CERA produces implicit cross-correlations using the physics of the coupled model

 \rightarrow Several outer iteration to ensure a consistent coupled analysis

A single observation experiment (CERA)

 \rightarrow Ocean increment from the ocean observation is propagated in the atmosphere

 \rightarrow CERA produces implicit cross-correlations using the physics of the coupled model

 \rightarrow Several outer iteration to ensure a consistent coupled analysis

A single observation experiment (CERA)

 \rightarrow Ocean increment from the ocean observation is propagated in the atmosphere

 \rightarrow CERA produces implicit cross-correlations using the physics of the coupled model

 \rightarrow Several outer iteration to ensure a consistent coupled analysis

Atmosphere-ocean coupling in CERA

How fast the ocean temperature increment propagates in the atmosphere?

- \rightarrow 18 single observation experiments (different locations and seasons)
- \rightarrow depends on the location and the resolution
- \rightarrow 6-12 hours in the tropical Pacific ocean

No cross-correlation at the initial time (separate background error)

Atmosphere-ocean coupling in CERA

How many outer iterations for convergence?

Assimilating only conventional surface and subsurface observations

Speed of convergence is different for ocean fields, coupled fields and atmospheric fields

Explicit cross-correlations from coupled ensemble forecasts

- \rightarrow 25-member coupled ensemble forecasts
- \rightarrow Coupled temperature covariance on the 21st August 2005 (130W, 0N)
- \rightarrow Localisation is needed (Menetrier et al.)

A coupled Kalman filter with explicit cross-correlation

A coupled Kalman filter with explicit cross-correlation

Comparison between implicit and explicit cross-correlation

 \rightarrow Implicit and explicit cross-correlation reduce the error in the atmosphere \rightarrow Performance depends on the mixed layer depth

Comparison between implicit and explicit cross-correlation

CERA

- Coupling based on the model physics
- Implementation recycling available blocks
- x No cross-correlation at initial time
- x Long assimilation window required

Ensemble-based

- Coupling based on the model physics
- ✓ Cross-correlation at initial time
- x Localization required

Hybrid method using an ensemble of CERA system with an hybrid background error should be investigated in the future

Great collaboration with NRL!

Coupled reanalyses

CERA-20C (1901-2010) and CERA-SAT(2008-2016) are available

http://apps.ecmwf.int/datasets/

Public Datasets

Access to these datasets is provided free of charge. Terms and conditions may apply

Global Reanalyses

- ERA5 (Jan 2008 present) (New years 2008-2009 added)
- CERA-20C (Jan 1901 Dec 2010)
- ERA-20C (Jan 1900 Dec 2010)
- ERA-Interim (Jan 1979 present)
- ERA-Interim/LAND (Jan 1979 Dec 2010)
- ERA-20CM (Jan 1900 Dec 2010) Final
- ERA-40 (Sep 1957 Aug 2002)
- ERA-15 (Jan 1979 Dec 1993)
- CERA-SAT (Jan 2008 Dec 2016) (New)

Coupled reanalyses

Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE

10.1029/2018MS001273

Key Points:

- CERA-20C reconstructs the past climate of the atmosphere, ocean, land, waves, and sea ice
- CERA-20C provides a 10 member ensemble of reanalyses to account for errors
- CERA-20C shows significant improvements in the troposphere,

CERA-20C: A Coupled Reanalysis of the Twentieth Century

Patrick Laloyaux¹, Eric de Boisseson¹, Magdalena Balmaseda¹, Jean-Raymond Bidlot¹, Stefan Broennimann², Roberto Buizza¹, Per Dalhgren¹, Dick Dee¹, Leopold Haimberger³, Hans Hersbach¹, Yuki Kosaka⁴, Matthew Martin⁵, Paul Poli⁶, Nick Rayner⁵, Elke Rustemeier⁷, and Dinand Schepers¹

¹European Centre for Medium-Range Weather Forecasts, Reading, UK, ²University of Bern, Bern, Switzerland, ³University of Vienna, Wien, Austria, ⁴Japan Meteorological Agency, Tokyo, Japan, ⁵Met Office, Exeter, UK, ⁶Meteo France, Paris, France, ⁷Deutscher Wetterdienst, Offenbach, Germany