History matching real production and seismic data for the Norne field

 $P\left(\frac{av}{at} + v \cdot \nabla v\right) = -\nabla P + \nabla \cdot \pi + f$

EnKF Workshop 2018

Rolf J. Lorentzen, Tuhin Bhakta, Dario Grana, Xiaodong Luo, Randi Valestrand, Geir Nævdal, Ivar Sandø

Introduction

- The full norne model is history matched using real production and seismic data
- Initial ensemble generated using Gaussian random fields
- Updates PORO, PERMX, NTG, MULTZ, MULTFLT, MULTREGT, KRW/KRG, OWC
- Clay content defined as VCLAY = 1 NTG
- Sequential assimilation (production \rightarrow seismic)
- Seismic data inverted for acoustic impedance at four points in time
- Iterative ensemble smoother, RLM-MAC, used (Luo et. al, SPE-176023-PA)
- Sparse representation using wavelets (data reduced by 86 %)
- Correlation based localization

Seismic data inversion and transformation

- Time shift correction: Alfonzo et al. 2017
- Linearized Bayesian approach: Buland and Omre, 2003: $S_{\text{base}} = Gy_{\text{base}} + e$
- Time to depth conversion: Provided Norne velocity model
- Upscaling: Petrel software
- Difference and averaging: $\overline{\Delta z}_{\rho}^{o}$

Petro-elastic model

• Estimate mineral bulk and shear moduli:

 $[\mathit{K}_{s},\mathit{G}_{s}] \leftarrow \mathrm{Hashin} - \mathrm{Shtrikman}(\mathit{K}_{\mathrm{quartz}},\mathit{G}_{\mathrm{quartz}},\mathit{K}_{\mathrm{clay}},\mathit{G}_{\mathrm{clay}},\mathit{V}_{\mathrm{clay}})$

- Dry rock bulk and shear moduli (empirical):
 [K_{dry}, G_{dry}] ← f(p, p_{ini}, φ)
- Fluid substitution:

 $[\textit{K}_{\mathrm{sat}},\textit{G}_{\mathrm{sat}}] \gets \mathrm{Gassman}(\textit{K}_{\mathrm{dry}},\textit{G}_{\mathrm{dry}},\textit{K}_{s},\textit{G}_{s})$

- P-wave velocity and rock density:
 - $[v_p, \rho_{\text{sat}}] \leftarrow \text{Mavko}(K_{\text{sat}}, G_{\text{sat}})$ $z_p = v_p \times \rho_{\text{sat}}$

1. Transform seismic observations: $c_{S} \leftarrow \text{DWT}(\overline{\Delta z}_{p}^{o})$

- 1. Transform seismic observations: $c_{S} \leftarrow \text{DWT}(\overline{\Delta z}_{p}^{o})$
- 2. Estimate noise in each subband (MAD): $\sigma_S = \text{median}(|c_S - \text{median}(c_S)|)/0.6745$

- 1. Transform seismic observations: $c_{S} \leftarrow \text{DWT}(\overline{\Delta z}_{p}^{o})$
- 2. Estimate noise in each subband (MAD): $\sigma_S = \text{median}(|c_S - \text{median}(c_S)|)/0.6745$
- 3. Compute standard deviation for coefficients: $\hat{\sigma}_S = \operatorname{std}(c_S)$

- 1. Transform seismic observations: $c_{S} \leftarrow \text{DWT}(\overline{\Delta z}_{p}^{o})$
- 2. Estimate noise in each subband (MAD): $\sigma_S = \text{median}(|c_S - \text{median}(c_S)|)/0.6745$
- 3. Compute standard deviation for coefficients: $\hat{\sigma}_S = \operatorname{std}(c_S)$
- 4. Compute truncation value (Bayesian shrinkage): $T_{S} = \frac{\sigma_{S}^{2}}{\sqrt{|\sigma_{S}^{2} - \hat{\sigma}_{S}^{2}|}}$

- 1. Transform seismic observations: $c_{S} \leftarrow \text{DWT}(\overline{\Delta z}_{p}^{o})$
- 2. Estimate noise in each subband (MAD): $\sigma_S = \text{median}(|c_S - \text{median}(c_S)|)/0.6745$
- 3. Compute standard deviation for coefficients: $\hat{\sigma}_S = \operatorname{std}(c_S)$
- 4. Compute truncation value (Bayesian shrinkage): $T_S = \frac{\sigma_S^2}{\sqrt{|\sigma_S^2 - \hat{\sigma}_S^2|}}$
- 5. Apply hard thresholding:

$$c_s
ightarrow c_s > T_S$$
, $d^o = c(\mathcal{I})$

Ensemble smoother

$$m_j^{i+1} = m_j^i + S_m^i (S_d^i)^T [S_d^i (S_d^i)^T + \gamma^i C_d]^{-1} \times [d^o + \epsilon_j - d_j^i]$$

$$\downarrow \mathsf{TSVD}$$

$$m_j^{i+1} = m_j^i + \tilde{K}^i \Delta \tilde{d}_j^i$$

 $\Delta ilde{d}^i_j \in \mathbb{R}^{p imes 1}, \ p \leq N$: Projected ("effective") data innovation.

1. Compute sample correlation between parameters (k) and "effective" measurements (l): $\rho_{kl} \in \mathbb{R}^{N_m \times p}$

- 1. Compute sample correlation between parameters (k) and "effective" measurements (l): $\rho_{kl} \in \mathbb{R}^{N_m \times p}$
- 2. Transform all correlations for each observation (ρ_l), and return high-frequency coefficients:

 $c_l^H \leftarrow \text{DWT}(\rho_l)$

- 1. Compute sample correlation between parameters (k) and "effective" measurements (l): $\rho_{kl} \in \mathbb{R}^{N_m \times p}$
- 2. Transform all correlations for each observation (ρ_l), and return high-frequency coefficients:

 $c_l^H \leftarrow \text{DWT}(\rho_l)$

- 3. Estimate noise in coefficients (MAD):
 - $\sigma_l = \text{median}(|c_l^H \text{median}(c_l^H)|)/0.6745$

- 1. Compute sample correlation between parameters (k) and "effective" measurements (l): $\rho_{kl} \in \mathbb{R}^{N_m \times p}$
- 2. Transform all correlations for each observation (ρ_l), and return high-frequency coefficients:

 $c_l^H \leftarrow \text{DWT}(\rho_l)$

- 3. Estimate noise in coefficients (MAD): $\sigma_l = \text{median}(|c_l^H - \text{median}(c_l^H)|)/0.6745$
- 4. Compute truncation value (universal rule): $\lambda_l = \max(\sqrt{2 \ln n(\rho_l)} \sigma_l)$

- 1. Compute sample correlation between parameters (k) and "effective" measurements (l): $\rho_{kl} \in \mathbb{R}^{N_m \times p}$
- 2. Transform all correlations for each observation (ρ_l), and return high-frequency coefficients:

 $c_l^H \leftarrow \text{DWT}(\rho_l)$

- 3. Estimate noise in coefficients (MAD): $\sigma_l = \text{median}(|c_l^H - \text{median}(c_l^H)|)/0.6745$
- 4. Compute truncation value (universal rule): $\lambda_l = \max(\sqrt{2 \ln n(\rho_l)} \sigma_l)$
- 5. Compute truncation matrix:

 $\xi_{kl} = 1$, if $|\rho_{kl}| \ge \lambda_l$, 0 otherwise

- 1. Compute sample correlation between parameters (k) and "effective" measurements (l): $\rho_{kl} \in \mathbb{R}^{N_m \times p}$
- 2. Transform all correlations for each observation (ρ_l), and return high-frequency coefficients:

 $c_l^H \leftarrow \text{DWT}(\rho_l)$

- 3. Estimate noise in coefficients (MAD): $\sigma_l = \text{median}(|c_l^H - \text{median}(c_l^H)|)/0.6745$
- 4. Compute truncation value (universal rule): $\lambda_I = \max(\sqrt{2 \ln n(\rho_I)} \sigma_I)$
- 5. Compute truncation matrix:

 $\xi_{kl} = 1$, if $|\rho_{kl}| \ge \lambda_l$, 0 otherwise

6. Updated Kalman gain matrix (see also Luo and Bhakta, 2017): $\hat{K} = \xi \circ \tilde{K}$

The observation operator $\mathcal G$ comprises several steps summarized as:

1. running the reservoir simulator using m_j to compute dynamic variables (pressure and saturation)

The observation operator $\mathcal G$ comprises several steps summarized as:

- 1. running the reservoir simulator using m_j to compute dynamic variables (pressure and saturation)
- 2. running the PEM to compute the acoustic impedance, $z_{p,j}$, at all survey times

The observation operator $\mathcal G$ comprises several steps summarized as:

- 1. running the reservoir simulator using m_j to compute dynamic variables (pressure and saturation)
- 2. running the PEM to compute the acoustic impedance, $z_{p,j}$, at all survey times
- 3. compute differences and average over formation layers to get $\overline{\Delta z}_{p,j}$

The observation operator \mathcal{G} comprises several steps summarized as:

- 1. running the reservoir simulator using m_j to compute dynamic variables (pressure and saturation)
- 2. running the PEM to compute the acoustic impedance, $z_{p,j}$, at all survey times
- 3. compute differences and average over formation layers to get $\overline{\Delta z}_{p,j}$
- 4. applying the DWT to get c_j

The observation operator $\mathcal G$ comprises several steps summarized as:

- 1. running the reservoir simulator using m_j to compute dynamic variables (pressure and saturation)
- 2. running the PEM to compute the acoustic impedance, $z_{p,j}$, at all survey times
- 3. compute differences and average over formation layers to get $\overline{\Delta z}_{p,j}$
- 4. applying the DWT to get c_j
- 5. using the leading indices \mathcal{I} to get $d_j = c_j(\mathcal{I})$

IRIS

Figure: Workflow for assimilating seismic data.

Norne field

- Grid size: 46 × 112 × 22 (113344)
- Active cells: 44927
- Wells:
 9 injectors,
 27 producers
- Production: 3312 days

빈 IRIS

Top: real data. Middle: production. Bottom: seismic.

Summary / Conclusions

- A workflow for history matching real production and seismic data is presented
- Clay content and other petrophysical parameters updated
- Data match improved for both production and seismic data
- Updated static fields are geologically credible
- Potential for simulating infill wells or EOR strategies

Acknowledgments

We thank

- Schlumberger and CGG for providing academic software licenses to ECLIPSE and HampsonRussell, respectively.
- Main financial support from Eni, Petrobras, and Total, as well as the Research Council of Norway (PETROMAKS2).
- Partial financial support from The National IOR Centre of Norway.