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Introduction

• The full norne model is history matched using real production and seismic data

• Initial ensemble generated using Gaussian random fields

• Updates PORO, PERMX, NTG, MULTZ, MULTFLT, MULTREGT, KRW/KRG, OWC

• Clay content defined as VCLAY = 1 - NTG

• Sequential assimilation (production → seismic)

• Seismic data inverted for acoustic impedance at four points in time

• Iterative ensemble smoother, RLM-MAC, used (Luo et. al, SPE-176023-PA)

• Sparse representation using wavelets (data reduced by 86 %)

• Correlation based localization



Seismic data inversion and transformation

• Time shift correction:
Alfonzo et al. 2017

• Linearized Bayesian approach:
Buland and Omre, 2003: Sbase = Gybase + e

• Time to depth conversion:
Provided Norne velocity model

• Upscaling:
Petrel software

• Difference and averaging:
∆z

o
p



Petro-elastic model

• Estimate mineral bulk and shear moduli:
[Ks ,Gs ]← Hashin− Shtrikman(Kquartz,Gquartz,Kclay,Gclay,Vclay)

• Dry rock bulk and shear moduli (empirical):
[Kdry,Gdry]← f (p, pini, φ)

• Fluid substitution:
[Ksat,Gsat]← Gassman(Kdry,Gdry,Ks ,Gs)

• P-wave velocity and rock density:
[vp, ρsat]← Mavko(Ksat,Gsat)
zp = vp × ρsat



Sparse representation and image denoising
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1. Transform seismic observations:

cS ← DWT(∆z
o
p)

2. Estimate noise in each subband (MAD):
σS = median(|cS −median(cS)|)/0.6745

3. Compute standard deviation for coefficients:
σ̂S = std(cS)

4. Compute truncation value (Bayesian shrinkage):

TS =
σ2
S√

|σ2
S−σ̂

2
S |

5. Apply hard thresholding:
cs → cs > TS , do = c(I)
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Ensemble smoother

mi+1
j = mi

j + S i
m(S i

d)T [S i
d(S i

d)T + γ iCd ]−1 × [do + εj − d i
j ]

↓ TSVD

mi+1
j = mi

j + K̃ i∆d̃ i
j

∆d̃ i
j ∈ Rp×1, p ≤ N: Projected (“effective”) data innovation.



Correlation based localization

1. Compute sample correlation between parameters (k) and “effective” measurements (l):
ρkl ∈ RNm×p

2. Transform all correlations for each observation (ρl), and return high-frequency
coefficients:
cH
l ← DWT(ρl)

3. Estimate noise in coefficients (MAD):
σl = median(|cH

l −median(cH
l )|)/0.6745

4. Compute truncation value (universal rule):
λl = max(

√
2 ln n(ρl)σl)

5. Compute truncation matrix:
ξkl = 1, if|ρkl | ≥ λl , 0 otherwise

6. Updated Kalman gain matrix (see also Luo and Bhakta, 2017):
K̂ = ξ ◦ K̃
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Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure and
saturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)



Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure and
saturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)



Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure and
saturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)



Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure and
saturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)



Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure and
saturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)



Generate initial
ensemble

Assimilate
production data

Compute data
dj = G(mj),
j = 1 . . .N

Compute tapering
matrix ξcorr

Update parame-
ters m1, . . . ,mN

Compute
wavelet coeff.

co = DWT(∆z
o
p)

Find indices for
leading coeff. (I)

Compute noise
(Cd) and data
do = co(I)
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Figure: Workflow for assimilating seismic data.



Norne field

• Grid size:
46 x 112 x 22
(113344)

• Active cells:
44927

• Wells:
9 injectors,
27 producers

• Production: 3312
days





Initial Production Seismic
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Top: real data. Middle: production. Bottom: seismic.
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Summary / Conclusions

• A workflow for history matching real production and seismic data is presented

• Clay content and other petrophysical parameters updated

• Data match improved for both production and seismic data

• Updated static fields are geologically credible

• Potential for simulating infill wells or EOR strategies
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