

Coupled data assimilation for atmosphere-land surface-subsurface models

Harrie-Jan Hendricks-Franssen^{1,2}, Wolfgang Kurtz^{1,2}, Hongjuan Zhang^{1,2}, Prabhakar Shrestha³, Dorina Baatz^{1,2}, Clemens Simmer³, Stefan Kollet^{1,2}, and Harry Vereecken^{1,2}

¹ Forschungszentrum Jülich, Agrosphere (IBG 3), Leo-Brandt-Strasse, 52425 Jülich, Germany
² HPSC-TerrSys, Geverbund ABC/J, Jülich, Germany
³ Meteorological Institute, Bonn, Germany

Overview

- Introduction on coupled data assimilation.
- Coupled atmosphere-land surface- subsurface model TerrSysMP.
- Data assimilation framework TerrSysMP-PDAF.
- Example synthetic and real-world studies.
- Conclusions and outlook.

Non-coupled DA

• Non-coupled DA of hydrological cycle.

Non-coupled DA

• Non-coupled DA of hydrological cycle.

Atmospheric DA (e.g., 3D/4DVAR)

Land surface DA (e.g., EnKF) Rainfall-runoff DA (e.g., McMC, PF)

Soil hydrology DA (e.g., 1D McMC, PF)

Groundwater DA (e.g., 3D EnKF)

Coupled DA

- Weakly coupled DA
 - DA for individual compartments of terrestrial system.
 - Covariances between states of different compartments not calculated.
 - Updates for single compartments propagated through coupled model equations
- Fully coupled DA
 - DA for multiple compartments of terrestrial system.
 - Covariances between states of different compartments calculated.
 - States of multiple compartments are directly updated by DA.

TerrSysMP

COSMO

- 3D Variably saturated subsurface flow and energy transport (Jones & Woodward, 2001; Kollet et al., 2009)
- Integrated overland flow, terrain following grid (Kollet & Maxwell, 2006; Maxwell, 2013)
- Integrated land surface and regional climate model (Shrestha et al., 2014)

External coupling via <u>OASIS3:</u> Multiple Program Multiple Data Execution Model (Shrestha et al., 2014)

• Atmospheric downscaling algorithm (Schomburg et al., 2010)

6

TerrSysMP

- Lateral subsurface transport of water and energy via groundwater
- PDE-based description of two-way interactions between groundwater, vadose zone, surface water, vegetation and atmosphere
- Land surface (CLM3.5) component still has large potential to be improved (e.g., beta-function for drought stress, photosynthesis types, plant traits)
- Overland flow process very non-linear → very high spatial resolution needed
- In general, many unknown parameters, initial states and forcings \rightarrow data assimilation

Simulations up to continental scale

- Groundwater depth calculated over Europe
- Problem: long spin-ups needed related to slow groundwater dynamics.

Current work: weakly coupled DA

Example: Assimilation of land surface and subsurface data, which only update own compartments and later other compartments.

Towards fully coupled DA?

Example: Assimilation of atmospheric, land surface and subsurface data; all of them can update all compartments.

Between weakly and fully coupled DA?

ÜLICH

Example: Only some of the measurement data are used to update (sensitive) states in other compartments

TerrSysMP-PDAF

- PDAF (Nerger and Hiller, 2013) was coupled to TerrSysMP
- COSMO, CLM and ParFlow are parallel, DA in addition also parallel
- DA system is fully integrated (no I/O, no model reinitializations)
- Good scalability through effective use of domain decomposition
- Different DA-algorithms activated (EnKF, local EnKF, LETKF)
- Multiscale SM, GW levels and river water levels can be assimilated

Results feasibility test (synthetic)

In total 2 x 10⁷ states and 2 x 10⁷ parameters are updated with EnKF

(Kurtz et al., 2016, GMD)

REFERENCE K

INITIAL K

FINAL K

1st Example: Weakly coupled DA

Cosmic ray scattering (HydroInnova, 2007)

- Primary cosmic rays collide with atomic nuclei
- Creation of secondary cosmic rays with lower energy
- Hydrogen is the most effective neutron absorber

Cosmic ray probe data: local effects

Equation to calculate soil moisture from cosmic ray counts:

 $\begin{array}{lll} \Theta_{grav} & - \text{ soil water content } [g/g] \\ a_0, a_1, a_2 & - \text{ constants} \\ N_{corr} & - \text{ Measured neutrons / hour} \\ N_0 & - \text{ Neutron counts under dry} \\ \text{ soil conditions} \end{array}$

Fitting curve with a_0 , a_1 , a_2 $a_0 = 0.0808$ $a_1 = 0.372$ $a_2 = 0.115$ and $N_0 = 1107$

TERENO observatory Rur catchment

Cosmic Ray Probe Network Rur catchment JÜLICH

Weakly coupled DA Land Surface-Subsurface

- Test value of cosmic ray probe data measured by cosmic ray probe
- Horizontal model resolution: 500 m (100x162 cells)
- Vertical resolution: 2cm-136 cm, 30 layers (30 m total thickness)
- Vegetation classification from MODIS
- Model forcings from COSMO-DE reanalysis
- Subsurface properties from European Soil data base

- 128 ensemble members, perturbation of precipitation, incoming short wave and long wave radiation, air temperature and porosity and log(K_{sat}).
- Assimilation period April September 2013.
- Assimilation of soil moisture from 8 cosmic ray probes with EnKF.
- Probe left out in assimilation used for verification (jackknife).
- Repeated 9 times (all probes once left out).
- CLM versus ParFlow-CLM assimilation.

RMSE soil moisture

- Assimilation of soil moisture data from cosmic-ray probe network is effective for catchment wide soil moisture characterization
- Subsurface conceptualization affects update of soil moisture data

2nd Example: Strongly coupled DA

2nd example: GW-level assimilation

 Soil moisture from satellite: indirect, coarse scale, only upper cm, not reliable over dense vegetation

<figure>

May contain valuable information about root zone soil moisture:

- Statistical correlations
- Physically related

Good data source:

- low cost
- high accuracy
- widely available

4. Juni 2018

Agrosphere Insitute (IBG-3) (Source: Modified from Smedema and Rycroft, 1983)

Water Table (WT) is in the *i*th layer

Method	Observation vector	State vector	Updated domain
Р	Р	Р	strongly coupled
P_log	log ₁₀ (100-p)	log ₁₀ (100-p)	strongly coupled
P_mask	Р	Р	weakly coupled
SWC	SWC (=porosity)	SWC (=porosity)	strongly coupled
Mix	Ρ	P (saturated) SWC (unsaturated)	strongly coupled

strongly coupled = updating both saturated and unsaturated zone.

weakly coupled = groundwater level data do not update unsaturated zone directly

Test case

- 2 x 2 grid cells (and 30 layers). Slope 1%.
- Spatially homogeneous parameters.
- Only log(K_{sat}) uncertain ~ N(0,1); 128 ensemble members.
- 100 years spin-up, 1 year assimilation.
- Daily assimilation of GWL (measurement error 0.01m).

Example results

Methodology to incorporate GW-levels

Value of GWL for RZSM-characterization U JÜLICH

- Vertically heterogeneous K_{sat} , α and n parameters.
- K_{sat} , α and n uncertain and sampled from multi-normal distribution (transformed parameters).
- Precipitation uncertain: perturbed with multiplicative noise U[0.5, 1.5].
- Performance evaluated for large number of synthetic experiments (100 cases: 4 soil types x 5 PFT's x 5 climate types).

RMSE Reduction vs. GWL

Folie 31

RMSE Reduction vs. Climate/PFT/Soil

green: mean red: median

If GW-level is not very shallow or very deep, assimilation shows clear benefit

Better results for loam soils.

Better results for broadleaf trees.

RMSE Reduction vs. GWL (PFT's)

- Baresoil
- Cropland
- Grass
- Needleleaf
- Broadleaf

Slightly better for broadleaf

RMSE Reduction vs. GWL (soil types)

3rd example: atmosphere-land surface DAU JÜLICH

- Homogeneous land surface & subsurface.
- 30 x 20 km² and resolution of 1km.
- Atmosphere has 50 vertical layers, with 20m resolution near surface.
- Subsurface has 30 vertical layers stretching until 30m.
- Periodic lateral BCS /impermeable lower BCS,

Spin-up

- 100 days of spin-up (Feb 1- May 7, 2008).
- Initial ground and vegetation temperature 283 K.
- Initial groundwater table depth 3m, hydrostatic profile.
- External forcing by COSMO-DE reanalysis data.
- Other parameters deterministic.

- 48 ensemble members.
- Spatially variable fields of saturated hydraulic conductivity.
- LAI, soil color, clay percentage, leaf carbon-nitrogen ratio randomly perturbed (but spatially constant).
- Turbulent mixing scale parameter.
- Other parameters deterministic.

Spatially variable hydraulic conductivity **U**JÜLICH

DA experiments

- Atmospheric DA: Atmospheric temperature at 10, 100, 200, 500, 1000, 3000 and 5000m.
- Land surface DA: Soil temperature at 2, 6, 10, 20, 30, 50, 80 cm depth.
- Subsurface DA: Soil moisture at 2, 6, 10, 20, 30, 50 and 80 cm depth.
- Observation variances: 0.60 K^2 , 0.10 K^2 and 0.005.
- Daily assimilation for 10 locations in space.

Characterization atmospheric states

OL

 Only atmospheric DA improves characterization of boundary layer potential temperature.

Characterization soil temperature

- Assimilation of soil temperature improves soil temperature, but less for upper 20 cm.
- Assimilation of atmosperic temperature improves soil temperature for upper layers.

Characterization soil moisture

- Assimilation of soil moisture improves soil moisture.
- Assimilation of soil temperature has also an impact on improving soil moisture characterization.

Conclusions and outlook

- TerrSysMP-PDAF: DA-framework optimally suited for HPC.
- Cosmic ray probe data very promising for land surface DA.
- GW-level data have high potential to improve root zone soil moisture characterization (under certain conditions) using fully coupled DA.
- Weakly coupled atmospheric-land surface- subsurface DA tested with different impacts of different observations. New test for drier conditions.
- DA with fully coupled model does not allow for compute intensive alternative DA-methods ((iterative) smoothers, PF).
- Current work: extension of coupled DA. See also poster by Natascha Brandhorst.

Thanks for your attention!