

Big data assimilation and uncertainty quantification in 4D seismic history matching

By Xiaodong Luo, IRIS/NIORC

A research based on the collaborations with the following colleagues at IRIS:

Tuhin Bhakta, Geir Evensen (also with NERSC), Morten Jakobsen (also with UiB), Rolf Lorentzen, Geir Nævdal, Randi Valestrand

Outline

- Seismic history matching (SHM) for reservoir management and challenges
- Ensemble-based SHM workflow at IRIS
- Application examples of the workflow
- Conclusion and future work

Seismic history matching (SHM)

Field development, e.g., optimize locations of new wells

Production management, e.g., optimize IOR strategies for existing wells

Challenges in seismic history matching (SHM)

Uncertainties (input/output)

Outline

- Seismic history matching (SHM) for reservoir management and challenges
- Ensemble-based SHM workflow at IRIS
- Application examples of the workflow
- Conclusion and future work

Ensemble-based SHM workflow at IRIS

Example: workflow of wavelet-based sparse representation*

* Luo, X., Bhakta, T., Jakobsen, M., & Nævdal, G. (2016). An ensemble 4D seismic history matching framework with sparse representation based on wavelet multiresolution analysis. *SPE Journal, 22,* 985 - 1,010

Illustration: 2D amplitude versus angle (AVA) data*

* Luo, X., Bhakta, T., Jakobsen, M., & Nævdal, G. (2016). An ensemble 4D seismic history matching framework with sparse representation based on wavelet multiresolution analysis. *SPE Journal, 22,* 985 - 1,010

UQ (input) through ensemble-based history matching algorithms

History matching (data assimilation) to update reservoir models

 ✓ Ensemble-based history matching methods provide a means of *uncertainty quantification (UQ)* for the estimated petrophysical parameters (inputs)

Poor UQ (input) performance due to ensemble collapse

Improving UQ (input) performance through correlation-based adaptive localization*

*Luo, X., Bhakta, T., & Nævdal, G. (2018). Correlation-based adaptive localization with applications to ensemble-based 4D-seismic history matching. *SPE Journal*, 23, 396 – 427, 2018

Overcoming some long-standing issues arising ^{IF군} ^{III} in conventional distance-based localization*[§]

 *Luo, X., Bhakta, T., & Nævdal, G. (2018). Correlation-based adaptive localization with applications to ensemble-based 4D-seismic history matching. SPE Journal, 23, 396 – 427, 2018.
[§]Luo, X, Lorentzen, R., Valestrand, R. & Evensen, G. (2018). Correlation-based adaptive localization for
IOR Centre ensemble-based history matching: Applied to the Norne field case study. SPE Norway One Day Seminar, SPE-191305-M^{gf Norway}

The National

IOR Ce

Additional enhancements are introduced to make correlation-based adaptive localization become simple and efficient in implementation, while avoiding empirical turnings.

See the poster on Monday, also to be presented in ECMOR, September 2018, Barcelona, Spain.

Ensemble-based seismic history matching (SHM) workflow at IRIS

Outline

- Seismic history matching (SHM) for reservoir management and challenges
- Ensemble-based SHM workflow at IRIS
- Application examples of the workflow
- Conclusion and future work

Example: Brugge benchmark case study*

	Experimental settings	
Image: set of the	Model size	139x48x9, with 44550 out of 60048 being active gridcells
	Parameters to estimate	PORO, PERMX, PERMY, PERMZ. Total number is 4x44550 = 178,200
	Production data (~10 yrs)	BHP, OPR, WCT. Total number is 1400
	4D seismic data (1 Base + 2 monitor surveys)	Near and far-offset AVA data. Total number is ~ 7 x 10 ⁶ (needing too much computer memory to be used directly)
	Leading wavelet coefficients	Two cases: 1. Total number is 178,332 (~2.5%); 100K case 2. Total number is 1665 (~0.02%). 1K case

*Luo, X., et al. (2016). An Ensemble 4D Seismic History Matching Framework with Sparse Representation and Noise Estimation: A 3D Benchmark Case Study. 15th European Conference on the Mathematics of Oil Recovery (ECMOR), Amsterdam, Netherlands, 29 August - 01 September, 2016.

Mean PORO (at layer 2) of initial guess

Mean PORO (at layer 2) after history matching (100K)

Mean PORO (at layer 2) after history matching (1K)

tional entre

*Lorentzen, R. et al, to be presented in

□ The 13th International EnKF Workshop, May 2018, Bergen, Norway

ECMOR, September 2018, Barcelona, Spain.

Outline

- Seismic history matching (SHM) for reservoir management and challenges
- Ensemble-based SHM workflow at IRIS
- Application examples of the workflow
- Conclusion and future work

IOR Cen

Conclusion

We have developed an efficient workflow to tackle the challenges of big data and UQ in SHM

> Still lots of room for further enhancements and developments

The continuous long-term supports from NIORC, RCN and industrial partners are essential for us to come to this far The National

Future work

 More efficient solutions to tackling the challenges in SHM using multidisciplinary approaches

• Possible improvements on the history matching algorithms

The 2018 user partners and observers:

Acknowledgements / Thank You / Questions

XL acknowledges the **Research Council of Norway** and the industry partners – **ConocoPhillips Skandinavia AS, Aker BP ASA, Eni Norge AS, Maersk Oil; a company by Total, DONG Energy A/S, Denmark, Statoil Petroleum AS, Neptune Norge AS, Lundin Norway AS, Halliburton AS, Schlumberger Norge AS, Wintershall Norge AS** – of The National IOR Centre of Norway for financial supports.

XL also acknowledges partial financial supports from the CIPR/IRIS cooperative research project "4D Seismic History Matching", which is funded by industry partners **Eni Norge AS, Petrobras, and Total EP Norge**, as well as the **Research Council of Norway** (PETROMAKS2).