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The basic idea of supervised learning algorithm is to train a map
H:X—=Y,

from a pair of data set {x;, yi}i=1,..n.
Remarks:

» The objective is to use the estimated map # to predict

A

ys = H(xs) given new data xs.

» Various methods to estimate H include regression, SVM,
KNN, Neural Nets, etc.

> For this talk, we will focus on how to use regression in
appropriate spaces to improve EnKF.
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An unsupervised learning algorithm

Given a data set {x;}, the main task is to learn a function o (x;)
that can describe the data.

In this talk, | will focus on a nonlinear manifold learning algorithm,
the diffusion maps': Given {x;} € M C R" with a sampling
measure g, the diffusion maps algorithm is a kernel based method
that produces orthonormal basis functions on the manifold,

Yk € Lz(Ma q)

These basis functions are solutions of an eigenvalue problem,
q_ldiv(qvwk(x)) = Akpk(x),

where the weighted Laplacian operator is approximated with an
integral operator with appropriate normalization.

1Coifman & Lafon 2006, Berry & H, 2016.



Example: Uniformly distributed data on a circle, we obtain the
Fourier basis.

o

Example: Gaussian distributed data on a real line, we obtain the
Hermite polynomials.
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Example: Nonparametric basis functions estimated on nontrivial
manifold

Remark: Essentially, one can view the DM as a method to learn
generalized Fourier basis on the manifold.
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» When EnKF is performed with small ensemble size, one way
to alleviate the spurious correlation is to employ a localization
function.

» For example, in the serial EnKF, for each scalar observation,
¥i, one “localizes” the Kalman gain,

K = Ly, o XY (VYT +R)Y,

with an empirically chosen localization function L,
(Gaspari-Cohn, etc), which requires some tunings.

» Let's use the idea from machine learning to train this
localization function. The key idea is to find a map that takes

poorly estimated correlations to accurately estimated
correlations.
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m=1,....M

training data set, where L is large enough so the correlation,
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Learning localization map?

. . k
Given a set of large ensemble EnKF solutions, {x,?, } k10 asa
m=1,....M

training data set, where L is large enough so the correlation,
ph ~ p(xi,y;), is accurate.

» Operationally, we wish to run EnKF with K < L ensemble
members. Then our goal is to train a map that transform the
subsampled correlation pff into the accurate correlation pb

» Basically, we consider the following optimization problem:

| LY g dpk
mln/[ 11]/[ 11] x,yjpu Pu) P(PU |PU) (pij) dp dpj;

Ly,

mMC
H 2
A~ min —— L
ny MS ( Xl_yjpl_l m,s py m) ’
m,s=1

where pfim ~ p(pu) and pU m.s (pU |pU) is an estimated
correlation using only K out of L training data.

2De La Chevrotiere & H, 2017.




Example: On Monsoon-Hadley multicloud model3

It's a Galerkin projection of zonally symmetric B-plane primitive
eqns into the barotropic, and first two baroclinic modes,
stochastically driven by a three-cloud model paradigm. Consider
observation model h(x) that is similar to a RTM.
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3M. De La Chevrotiére and B. Khouider 2016.




Example of trained localization map

09

08

07

06

04

03

02

01

Channel 3 and 0,

L4 map . Correlation
:
0.5
0 — —
—
04
-0.5
208 108 EQ 10N 20N 208 108 EQ 10N 20N
Channel 6 and 0,
L4 map L Correlation
.




0>
Q-----Q-22c2Qe-2--Q--=--0
T
25

T 1
€100 <000

TSI JO UeaA dwL],

0,

[e
o
.
.
'

o

Q
9
T

8000 200

0

HSIAR JO UedA S,

Ensemble Size

Ensemble Size

Ps

i L IRy P Sy TN
T
25

UL
€200 S00°0

HSIAR JO UBSJA dWIL],

ol 1
of 2
o of- ©
of- &
ol
T T T
SI00  S00°0
HSIAR JO UBSJA SwIL],

Ensemble Size

Ensemble Size

obs noise climato std ‘

Ld

-0-

K1000




Correcting biased observation model error*

All the Kalman based DA method assumes unbiased observation
model error, e.g.,

yi = h(xi) +ni,  ni ~N(0,R).

Suppose the operator h is un known. Instead, we are only given h,
then

yi = h(x;) + bi

where we introduce a biased model error, b; = h(x;) — h(x;) + ;.

“Berry & H, 2017.



Example: Basic radiative transfer model

Consider solutions of the stochastic cloud model®, { T(z2), fes, q, fu, fs, fc }.
Based on this solutions, define a basic radiative transfer model as follows,

ho(xX) = 6o T (0) + /0 ) ‘9;2“ () dz,

where T, is the transmission between heights z to oo that is defined to depend
on q.

The weighting function, 2=

5 are defined as follows:

height (z)

weighting function (4L)

SKhouider, Biello, Majda 2010



Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is z; = 12km, while the
cumulus cloud top height is z. = 3km. Define f = {fy, fc, f;} and
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h(af) = (1—fu—£)[0aTu(0) + /0 ” T(z)aaz” (2) ]
Hia+ Tz + [ T@ G @) a

Zd



Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is z; = 12km, while the
cumulus cloud top height is z. = 3km. Define f = {fy, fc, f;} and
x ={T(z),0e,q}. Then the cloudy RTM is given by,

h(af) = (1—fu—£)[0aTu(0) + /0 ” T(z)aaz” (2) ]
(4 ) T(2) To(24) + / :° T(2) 862" (2) dz
= (- f-0]a- 0O+ [ TG )
HET(2)To(z) + / jd T(2) 3;; (2)d]
(s £)T(26) To(20) + / - T(z)aaTZ” (2) dz

Zd



Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is z; = 12km, while the
cumulus cloud top height is z. = 3km. Define f = {fy, fc, f;} and
x ={T(z),0e,q}. Then the cloudy RTM is given by,
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Zd

One can check that h,(x, 0) corresponds to cloud-free RTM.



Systematic model error in data assimilation

Suppose the observation is generated with
yu:hll(X7f)+777 UNN(QR)

The difficulty in estimating the cloud fractions, cloud top heights
and (in reality we don't know precisely how many clouds under a
column) induces model error.



Systematic model error in data assimilation

Suppose the observation is generated with
yu:hll(X7f)+777 UNN(QR)

The difficulty in estimating the cloud fractions, cloud top heights
and (in reality we don't know precisely how many clouds under a
column) induces model error.

In an extreme case, we consider filtering with a cloud-free RTM:

W= hV(X»O) + by

where b, = h,(x,f) — h,(x,0) + n is model error with bias.



Observations (y,) v Model error (b,)
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State estimation of the model error

We propose a secondary filter to estimate the statistics for b; as follows:

Primary Filter

Prior Posterior

p(x;) p(xi | yi)
Error Prior Secondary Filter Error Posterior

p(b) p(b|yi)

. RKHS+Training Data . .
Observation Likelihood

Yi p(yi | b)

A machine learning technique, kernel embedding of conditional
distribution®, is employed to train a nonparametric likelihood function.

6Song, Fukumizu, Gretton, 2013.



Secondary Bayesian filter
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Filter estimates (with adaptive tuning of R and Q)
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Nonparametric likelihood function

We will use the kernel embedding of conditional distribution.”

Recall: Let X be a r.v on M and distribution P(X). Given a
kernel K : M x M — R, the Moore-Aronszajn theorem states that
there exists a Reproducing Kernel Hilbert Space (RKHS)

[2(M, q). This means that that f(x) = (f, K(x,))q.

"Song, Fukumizu, Gretton, 2013.
D



Nonparametric likelihood function

The kernel embedding of conditional distribution P(Y|B) is defined as,
e = EvolK(Y.l = [ K(y.)aPlyle).
Given g € L2(V, §),

Eyple(Y)] = /N g(y)dP(y|b) = /N (&, K(y.))adP(y|b)

(e [ K(y.)dPUI), = (& pvisls
N

One can verify that

fyp = qCysChK (b, ),

where
Coy — / K(b,-) @ K(y,-) dP(b,y)
MXN

is the kernel embedding of P(B, Y) on appropriate Hilbert spaces.



Nonparametric likelihood function p(y|b)

Given {b;}; and {y;}); Apply diffusion maps to learn the data-driven
orthonormal basis functions ;(b) € L*(M, q) and @i(y) € L*(M, §). Let

p(ylb) = ZNYlb «Pe(¥)a(y)

where

pyipe = (P([b), Gx) = Evp[@e] = (kvis, Bi)a

= (qCysCpaK(b,"), Br)g
> wi()[CveCasly
J
where
[Cyelixk = (Cve, P ® Yk)ang ~ Z‘PJ(YI)‘Pk 1),
[Ceelixk = (CBB,¢ ® pk) Z wi(bi)e(bi),
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