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Filtering Problem
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dX: = f(Xp)dt + V2CdW;
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State of the art

Linear Model: Kalman- Bucy Filter

dxM = AxMdt + bdt — PMHT R (HxMdt — aY,)

Non-linear Model: approximate with empirical measure, i.e.,

m(x|Yo:t) = Zéx—

Ansatz: define modified evolution equation for particles X



Ensemble Kalman Filter (EnKF)
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Works remarkably well in practice: meteorology, oil reservoir
exploration
But: theoretical understanding is largely missing



Recent accuracy results for EnKF

Interacting particle representation of the model error:

dX{ = f(x)ydt+CCT(PM) 1 (X[ — x)dt

- %PtMHTR_l (Hx{dt + Hx[de - 2dY,)
Setting: dY; = X,dt + RY2dW, with R = ¢/
Results: ([dWRS16])

» Control of spectrum of covariance matrix PM over t € [0, c0).

> Control of estimation error e; = || X7*f — xM||2 in expectation

E[E] = O(c'/?) (1)
and pathwise over fixed interval t € [0, T].

P[sup E; > c1e9] < O(eH/27179) (2)
t<T



Numerical confirmation for L63
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EnKF-based particle filters

Ansatz: modified evolution equation for the particles e.g., of the
form

dX{ = f(X))dt + Cawi — > Xl ds!
J

Aims:
» achieve first/second order accuracy
> to go beyond Gaussian assumption
» consistency for M — oo

» hybrid formulation to combine different interacting particle
filters ([CRR16])



Linear ensemble transform filters (LETF)

Given: M samples x! ~ 7(x) (prior)
Analysis step:
XF =X dj 3)
i

with transformation matrix D = {dj;} subject to

M
i=1

Examples: ENKF, ESRF, NETF, ETPF (see [RC15])



Ensemble transform Particle Filter (ETPF)

Given:
> M samples x/ ~ 7(x) (prior ensemble)
» normalized importance weights w; oc m(y|x/) (likelihood)

Desired: M samples x? ~ 7(x|y)
Ansatz: replace resampling step with linear transformation by
interpreting it as discrete Markov chain given by transition matrix

D € RM*xM

s.t. dj > 0 and

1
Zd,'j:l, MZC/,'J':W;.

Jj

Benefits: localization, hybrid



Ensemble transform Particle Filter (ETPF)

Then the posterior ensemble members are distributed according to
the columns of the transformation

)~(Jf’” ~ : and x7 = IE[)?J‘;] = Zx,-"d,-j (5)
d;j I
Example. Monomial resampling
wip wp oW
Wa wo e wh

Dnono :=Ww®1 =
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Ensemble transform Particle Filter (ETPF)

Then the posterior ensemble members are distributed according to
the columns of the transformation

5(J.a ~ : and xja = E[)?Ja] = inadij (5)
Ay

Example. Monomial resampling

Wl W1 .o oe . Wl

W2 W2 ... W2
Dmono :=w ® 1 =

WM WM DR WM

Here: Xf and X? are independent.
Idea: increase correlation between X' and X?



Ensemble transform Particle Filter (ETPF)

Solve optimization problem

M
Derpr = argmin M Z tiil|Ixf — zf||2
ij=1

to find transformation matrix Deypr that increases correlation
([Reil3]).

Remarks:
» consistent for M — oo

» first-order accurate for finite M, i.e,

1 M M
X7 = o ;x,a = ; W,'X,-f (6)

» But: not second-order accurate



Second-order accuracy

The analysis covariance matrix

M
P = D3 (%) %)
M i=1

is equal to the covariance matrix defined by the importance
weights, i.e.



First-order accurate LETFs

Notation:

X =(xf,... xf), X=(xf,...,x3) € RNV
and analogously

w=(w,...,wy)" € RM* and W = diag (w)
LETF is first-order accurate if

1
anl = Xfw.

This holds if D satisfies



First-order accurate LETFs

Class of first-order accurate LETFs
Dy = {D e RMM|pT1 =1, D1 = Mw}

Examples:
> Deukr ¢ D1
> Dgsrr ¢ D1
» Dgrpr € D1
» Dniono € D1



Second-order accurate LETF

Analysis covariance matrix:

o 1 T T\T T
Pt = UX/(D —w1")(D —w1")T(X) (7)

Importance sampling covariance matrix:
P* = X{(W —ww™)(X)T. (8)
Thus the following equation has to hold for second-order accuracy:
(D —w1T)(D —w1h)T =W — ww? (9)
Class of second-order accurate LETFs

Dy ={D e Dy|(D—-wlT)(D-wlh)T =W —ww'}. (10)



Second-order corrected LETF

Given: D € D,
Goal: correct transformation D € D5

Ansatz: R
D=D+A

with A € RM*M gych that A1 =0, AT1 = 0 ([dWAR17]).

Need to solve algebraic Riccati equation:

M(W —wwT) — (D —wl1T)(D —w1™)T
=(D — w1 AT £ A(D —w1T)T + AAT.



Numerical example |

Gaussian prior, non-Gaussian likelihood:

Prior and Posterior Distribution
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Figure: Prior and posterior distribution for the single Bayesian inference
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Numerical example |

standard ETPF
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Figure: Absolute errors in the first four moments of the posterior
distribution.



Numerical example |l
Lorenz-63 model, first component observed infrequently
(At = 0.12) and with large measurement noise (R = 8):

ensemble transform filters
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Figure: RMSEs for various second-order accurate LETFs compared to the

ETPF, the ESRF, and the SIR PF as a function of the sample size, M.



Numerical example |l

Hybrid filter: D := Dgsrr Derpr.

hybrid 2nd order accurate ETPF-ESRF

3L[—=M=15
—-6-M=20

M=25
2.8 |—~*—M=30
—#—M=35

RMS error

0 0.2 0.4 0.6 0.8 1
bridging parameter «

Figure: RMSEs for hybrid ESRF (« = 0) and 2nd-order corrected
LETF/ETPF (e = 1) as a function of the sample size, M.
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