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Model evidence
For a model M simulating an unknown process such that:
Xk = M(Xk—1), (1)
where M : RM — RM,
And for an ideal infinite set of observations of the same process,

yK: = {yKayK—h "'ay17y07 "'7y—oo}a

such that:
Vi = Hi(Xk) + €, (2

where Hy : RM — RY and ¢, represents observation error.

Model evidence (marginal likelihood of the observations)

Pyl M) = / ax p(yyeX)p(x). @)
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Model evidence
For a model M simulating an unknown process such that:
Xk = M(Xk—1), (1)
where M : RM — RM,
And for an ideal infinite set of observations of the same process,

yK: = {yKayK—h "'ay17y07 "'7y—oo}a

such that:
Vi = Hi(Xk) + €, (2

where Hy : RM — RY and ¢, represents observation error.

Model evidence (marginal likelihood of the observations)

Pyl M) = / ax p(yyeX)p(x). @)

Defined as a “climatological” model evidence
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Conclusions

Model evidence using data assimilation

We rather define a contextual model evidence i.e. conditioned on the
present

* p(Yk:.IM) = p(Yk.11¥o.) [M is dropped for clarity]

In the context of present time, we marginalize over Xy and not over x
The Contextual Model Evidence (CME)

(Ve lVo.) = / aXo P(Y . [%0)D(KolYo.) 4
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Model evidence using data assimilation

We rather define a contextual model evidence i.e. conditioned on the
present

* p(Yk:.IM) = p(Yk.11¥o.) [M is dropped for clarity]

In the context of present time, we marginalize over Xy and not over x
The Contextual Model Evidence (CME)

(Vi l¥o) = / dxXo Py 0 [%0)P(XolYo.) @

with
e the likelihood of the observations

e the posterior density (state estimation DA product)
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Estimating the CME using DA methods

e ensemble Kalman filter
e 4D ensemble methods (En-4D-Var/IEnKS)

Lorenz 95 - F=8

log(p,)

IS EnKF En-4D-Var |EnKS GHQ MC

Carrassi et al. (2017)
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Estimating the CME using DA methods

e ensemble Kalman filter
e 4D ensemble methods (En-4D-Var/IEnKS)

Lorenz 95 - F=8

IS EnKF En-4D-Var |EnKS GHQ MC

) Carrassi et al. (2017)
Conclusions

e Accurate estimation of the CME using DA
e Accuracy related to DA method’s sophistication
e Yet, not proportional

= We use the EnKF formulation
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CME formulation

The CME'’s EnKF formulation [y,. is dropped for clarity]
K
_d 1 1 _
i) ~ [T ¢ 20~ owp {1y — HuCI" 5y, — M} )
k=1

Hannart et al. (2016) ; Carrassi et al. (2017)
with 3 = HPiH} + Ry where

PL: prior error covariance matrix at time k, Hx: observation operator at time k,
Rx: observation error covariance matrix, Hy: its linearization.
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CME formulation

The CME'’s EnKF formulation [y,. is dropped for clarity]
K
_d 1 1 _
i) ~ [T ¢ 20~ owp {1y — HuCI" 5y, — M} )
k=1

Hannart et al. (2016) ; Carrassi et al. (2017)
with 3 = HPiH} + Ry where

P!: prior error covariance matrix at time k, H«: observation operator at time k,
R: observation error covariance matrix, Hy: its linearization.

The objective of this study

Problem in high dimension:

Ensemble DA methods suffer from sampling errors in high dimension
and are usually used with localization

= Crucial to consider how to deal with localization in the CME
formulation
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Domain localization

e Seperate analysis: DA performed for each model gridpoint s € I

e Box car: Only the neighboring obs. are used in the analysis
i.e. with y|g, H|s, R|srestricted to a disk around s of radius pioc

e Tapering: a (diagonal) localization matrix L applied such that

~—1 _ _
R =LoRy = (R, (L)y (6)
(L);,; is equal to 1 if i = s and decreases to 0 outside of the disk

X

N Poc R
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Domain localization

e Seperate analysis: DA performed for each model gridpoint s € I

e Box car: Only the neighboring obs. are used in the analysis
i.e. with y|g, H|s, R|srestricted to a disk around s of radius pioc

e Tapering: a (diagonal) localization matrix L applied such that

~—1 _ _
R =LoRy = (R, (L)y (6)
(L);,; is equal to 1 if i = s and decreases to 0 outside of the disk

X

N Poc R

~—1
= Derive the CME for each gridpoint using y s, Hjs, Rjs
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DL-CME

At each gridpoint s € T, it is possible to derive

K
P(Yk:1js) ~ H/dxk P(Yiis|Xk—1)P(Xk—1|Yk—1.s) /dxo P(Y1s|X0)P(Xo|Yo:)
k=2

|3

Q)

P(Yk:11s) %H(Zw)_

k=1

1 1 o
2exp{—§(yk‘s — HigoXi) " (g — Hk\sxf()} (7)

with 3k = HysPHE | + Ryjs and d the size of yx,.

Conclusions
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DL-CME

At each gridpoint s € T, it is possible to derive

K
P(Yk:1js) ~ H/dxk P(Yiis|Xk—1)P(Xk—1|Yk—1.s) /dxo P(Y1s|X0)P(Xo|Yo:)
k=2

Q)

K
_ 1 1 o
)~ [(r) FIBEexp{= v~ Mo "5 v~ B} 1)
k=1

with 3k = HysPHE | + Ryjs and d the size of yx,.

Euristic global estimator
Domain localized CME (DL-CME)

p(yk:1) = exp {Z w(s) ln{p(ws)}} ;

sel

with w(s), scalar weights inversely proportional to the localization radius



Model evidence and data assimilation The Domain Localized CME Numerical experiments

(e]e} [e] 000
(e]e] oe [e]e]e}

CME for model selection
Two models: M, and M;
and their respective model evidences:
Po(y) = P(Yx:1|Yo:, Mo) and pi(y) = p(Yx.11¥o., M)
Model selection indicator with global and domain localized CME:
e G-CME: Ap(Mo, M1) =In{pi(y)} — In{po(y)} > 0, if M correct
® DL-CME: Ag(Mo, M1) = In{pi(y)} — In{po(y)} > 0, if M correct

K-long evidencing window

X —
EnKE-based
Trajectory

X .
observations

True/Correct model 7,

Incorrect model 7,

Conclusions
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CME for model selection

Two models: M, and M;
and their respective model evidences:

po(Y) = p(Yk11Yo., Mo) and pi(y) = p(Yx+1Yo., M1)

Model selection indicator with global and domain localized CME:

e G-CME: Ap(Mo, M1) =In{p:(y)} — In{po(y)} > O, if M1 correct
® DL-CME: Ag(Mo, M1) = In{pi(y)} — In{po(y)} > 0, if M correct

K-long evidencing window

X —
EnKE-based
Trajectory

X .
observations

True/Correct model 7,

Incorrect model 7,

The scope of the following experiments is to compare
the G-CME’s and the DL-CME’s model selection abilities

Conclusions
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L95 - Model selection problem
Lorenz-95 model
dx;
dt
fori=1,...,M = 40 and F represents the external forcing.

= (Xit1 — Xi—2)Xi—1 — X; + F, 9

The models The observations
e M{:F=F;=8 Mj traj. perturbed: € € N(0,1)
e My: F =Fp varying Obs. error cov. matrix: R = l4g

for T = 10° DA cycles Obs. grid: A; = 0.05 and Hx = Iy

DA setup
LETKF - 10 members
Localization radius: pjoc = 5 (tuned for M)

Inflation: tuned for each model
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e ROC curves assess the quality of the selection indicators for various
confidence thresholds, from a diagonal curve for random to 1 for perfect

The Domain Localized CME
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L95 - Sensitivity to the forcings

selection
e Fp=81andFy=8.9 ;ppc=5;K=1

True positive rate

10 F,=8 and F;=8.1
— RMSE
¥-¥ DL-CME
0.8/ mm G-CME
- GCMEg
0.6
04
02
0.9
0.0 0.2 0.4 0.6 0.8

False positive rate

True positive rate

Fi=8andFy=89

¥}

0.8|
0.6]
0.4
I — RMSE
02l ¥-¥ DLCME
B8 G-CME
. - GCME,
0.k
0.0 02 0.4 06 038 1.0

False positive rate

Conclusions
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L95 - Sensitivity to the forcings

e ROC curves assess the quality of the selection indicators for various
confidence thresholds, from a diagonal curve for random to 1 for perfect
selection

e Fp=81andFy=8.9 ;ppc=5;K=1

10 F,=8 and F;=8.1 10 F,=8 and F,=8.9 _
— RMSE =
¥-¥ DL-CME
0.8/ mm G-CME
g - G-CMEy 9
e [
906 o
2 H
G G
g g
o 0.4 v
] 2
£ £ . — RMSE
02 02l ¥-¥ DLCME
’ -8 GCME
., ; - GCMEg
0.0 0.08
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate

1- For Fy = 8.1, all indicators close to random for the very close incorrect model
2- DL-CME still improves over the G-CME and the reference RMSE

3- The reference G-CME4 remains the best indicator

4- For Fyp = 8.9, all indicators improve and the DL-CME outperforms G-CME4q
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L95 - Sensitivity to localization

e GINI index quantifies a ROC curve performance, from 0 for random to 1 for
perfect selection
e Fy =8.5;varying pic ; K =1

1.0 T T T T T T T T
@-® RMSE
B8 G-CME
08 V¥ DL-CME
X
0 0.6
T
£
z
5] 0.4
0.2

0.0 :
3 4 5 6 7 8 9 10 11 12 13
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L95 - Sensitivity to localization

e GINI index quantifies a ROC curve performance, from 0 for random to 1 for
perfect selection
e Fy =8.5;varying pic ; K =1

1.0 —
©-o RMSE
B G-CME
¥-¥ DLCME

08

x

06

S

£

z

S04

0.2

05 7 & 9 10 11 12 13

Ploc
1- The two CMEs have better selecting skills than the reference RMSE
2- The DL-CME shows a constant improvment over the G-CME
= The DL-CME improvment doesn’t seem sensitive to the tuning of pjyc
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SPEEDY - Model selection problem

The SPEEDY model (Molteni, 2003)

A global atmospheric model resolving the large scale dynamic
e Res.: 96 x 48 x 7 ~ O(10%) ® Hydrostat., o-coord, spectral-transf.

e Vor, Div, T, Q, log(ps) e Convect., condens., clouds, radiat.

Twin experiment
e True trajectory: 5 month SPEEDY run (01/02-30/06/1983)
e 2 versions of the model: different convective relaxation time parameter

e Correct parameter: 7¢n, = 6hs
® Incorrect parameter: 7¢n, = 5hs50min

e Artificial observations on [u, v, T, Q, ps]
(Frequ.: 6h, Spat. distrib.: random on 1/2 x grid)

e DA: LETKF, 50 members (Miyoshi, 2005, 2007)
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SPEEDY - Probability of selection

e Probabilities of selection: number of successfull selection

e DA using all obs. ; the CME computed for seperate var.
e K =1 (6hours)and K = 12 (3 days)

—
=)

o
©

o
o

©
'S

o

Probability of selection
N

0.0

K=1

Probability of selection

g
=)

o
©

o
o

o
IS

o
N

0.0

K=12

Conclusions
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SPEEDY - Probability of selection

e Probabilities of selection: number of successfull selection
e DA using all obs. ; the CME computed for seperate var.
e K =1 (6hours)and K = 12 (3 days)

K=1 K=12

—
=)

o
©

°
o

°
'S

o
N

Probability of selection
Probability of selection

0.0

1- For (u,v,T), DL-CME has better selection skills (small impact of modified parameter)
2- For Q, G-CME and DL-CME have closer selection skills

3- For K = 12, static covariance hyp. may be ill-adapted for long evidence window



Model evidence and data assimilation The Domain Localized CME

Numerical experiments Conclusions
oo o 000
oo 0o ocoe

Evidence maps

e Maps of differences for local CME and local RMSE averaged over 5 months

Local RMSE diff.: Q
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Evidence maps

e Maps of differences for local CME and local RMSE averaged over 5 months

Local RMSE diff.: Q

1- The local CME map reveals different geographical information

2- This information could be used to understand the impact of the altered param.
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Conclusions

e Model evidence is a useful statistic tool
(Winiarek et al., 2011 ; Elsheikh et al., 2014 ; Carson et al., 2016 ...)

e Carrassi et al. (2017) proved a CME can be computed using DA

e We developed a new CME formulation taking into account
localization for high dimensional applications

e We showed its skills as a model selection metric
e \We exhibited the spatial diagnosing potential of local CME

e Applications of the CME:
- Extreme event attribution (Hannart et al., 2016)
- Parameter estimation (Carrassi et al., 2017)
- Model selection (Metref et al., 2017)
- Climate change attribution (Ongoing work)
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