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k(x) → flow modeling → fluid pressure and fluid content

F. pressure and f. content → petro-elastic modeling → elastic properties

Elastic properties → seismic modeling → simulated seismic data

We use elastic properties (‘inverted seismic data’) as ‘seismic data’ when
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Background
Inverted seismic data

Elastic properties: Vp, Vs , ρ, . . . are pixel fields

Spatially dense → high potential for estimating k(x)

Signal masked by errors (acquisition, processing, inversion, . . . )

⇒ Extract data features with enhanced ‘signal-to-noise ratio’

⇒ Some information will, however, be lost
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Background
Ensemble-based methods

Degrees of freedom (DOF) is limited by ensemble size, E (assuming no
localization)

E is usually moderatly large (O(100))

Spatially dense data may lead to unwarranted strong uncertainty
reduction in estimation results

Feature extraction may alleviate this problem

Subspace pseudo inversion is another alternative
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Hence, some of the information available is not applied in the data
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uncertainty reduction without discarding important information?

Alternatively:
How to increase ensemble size sufficiently to handle spatially dense data
without increasing computational cost?
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Reduce Data Influence–Approaches
Subspace psudo inversion1

Matrix to be inverted in Kalman gain, W = SST + (E − 1)CD , may be
(numerically) singular

Use pseudo inverse, W+, but this is costly for large no. of data

Aproximate W by B = SST + (E − 1)SS+CD(SS+)T , and use B+ in
Kalman gain

1Evensen G, Data Assimilation; the Ensemble Kalman Filter



Reduce Data Influence–Approaches
Subspace psudo inversion1

Matrix to be inverted in Kalman gain, W = SST + (E − 1)CD , may be
(numerically) singular

Use pseudo inverse, W+, but this is costly for large no. of data

Aproximate W by B = SST + (E − 1)SS+CD(SS+)T , and use B+ in
Kalman gain

1Evensen G, Data Assimilation; the Ensemble Kalman Filter



Reduce Data Influence–Approaches
Subspace psudo inversion1

Matrix to be inverted in Kalman gain, W = SST + (E − 1)CD , may be
(numerically) singular

Use pseudo inverse, W+, but this is costly for large no. of data

Aproximate W by B = SST + (E − 1)SS+CD(SS+)T , and use B+ in
Kalman gain

1Evensen G, Data Assimilation; the Ensemble Kalman Filter



Reduce Data Influence–Approaches
Subspace psudo inversion1

Matrix to be inverted in Kalman gain, W = SST + (E − 1)CD , may be
(numerically) singular

Use pseudo inverse, W+, but this is costly for large no. of data

Aproximate W by B = SST + (E − 1)SS+CD(SS+)T , and use B+ in
Kalman gain

1Evensen G, Data Assimilation; the Ensemble Kalman Filter



Increase ensemble size without increasing cost
Approach–Upscaled simulations2

Standard forward model: k(x)→ f (k(x))

Upscaled forward model: k(x)→ u(k(x))→ f (u(k(x)))

Computational cost ∼ solving linear system ∼ O(Gβ); β ∈ (1.25, 1.5)

Ensemble computational cost ∼ GβE = Gβ
u Eu ⇒ Eu =

(
G
Gu

)β
E

Cost of Eu upscaled simulations equals that of E standard simulations

2Fossum K and Mannseth T, Coarse-scale data assimilation as a generic alternative
to localization, Comput Geosci 21(1) (2017)
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Setup

Original data: bulk-velocity (Vp) pixel field

Notation for labelling plots:

True: results obtained with pixel data and E = 4800

Estimate: results obtained with any type of data and computational cost
corresponding to E = 100 standard simulations
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Pixel data
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k(x) estimate with pixel data on 20x20 grid
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k(x) estimate with data coarsening to 7x7 grid
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k(x) estimate with 98% energy subspace pseudo inversion
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Examples
k(x) estimate with 10x10 upscaled simulations
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Examples
k(x) estimate with 10x10 upscaled simulations and 10x10 data coarsening
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Summary

Investigated how to balance information against available DOF

Three ways of reduction of data-space influence (data coarsening,
structure extraction, subspace pseudo inversion) and one way of
increasing ensemble size without increasing cost (upscaled simulations)
have been considered

Reduction of data-space influence (all three ways) gave some
improvement, with structure extraction as the least successful

Upscaled simulations did not give good results

Upscaled simulations combined with data coarsening gave good results,
particularly when scales of simulation grid and data grid were similar
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