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Introduction
Coarse scale and multilevel ensemble based data assimilation

In reservoir simulation models

state = g(m) = (Saturation, Pressure)

obtained at a high computational cost

Ensemble based data assimilation approximates

p(m|d) = p(d|m)p(m)∫
(p(d|m)p(m))

by Monte-Carlo estimation

Quality of estimation relies on the ensemble size

Finite computational resources → ensemble size not optimal
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Introduction
Coarse scale and multilevel ensemble based data assimilation

The following assumptions are made throughout:

I Proxy model with adjustable accuracy:
dl = f(state) = f(gl(m)) with l = 0, 1, . . . , L

I For l = L the proxy model equals the original model

I Numerical accuracy inversely proportional to computational
cost

I For all accuracy levels: d ∈ Rd and m ∈ Rm

Earlier results: Coarse scale ensemble based data assimilation

A better balance between numerical and statistical accuracy results
in improved DA results

However:
High proxy error → Poor estimation of p(m|d)
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Introduction
Multilevel methods

Problem with coarse scale DA: select accurate proxy model

The multilevel approach removes this problem

Alternative approach →

1. MLEnKF – unbiased

2. Bayesian model average – biased

Firstly: Investigate Multilevel Monte Carlo (MLMC)
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Multilevel Monte Carlo
Introduction

MLMC was introduced as an efficient alternative to standard MC
estimation

Given a sequence P0, . . . , PL−1 which approximates PL

I increasing accuracy

I increasing cost

E[PL] = E[P0] +

L∑
l=1

E[Pl − Pl−1]

which can be estimated as

(Ne)
−1
0

(Ne)0∑
n=1

Pn
0 +

L∑
l=1

(Ne)
−1
l

(Ne)l∑
n=1

(Pn
l − Pn

l−1)

With unlimited computational resources → the ML method is
more efficient than the standard MC method
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Multilevel Monte Carlo
Application with restricted computational resources

MSE of MLMC for Euler discretisation of simple SDE 1

c2h
2
L +

L∑
l=0

c1(Ne)
−1
l hl

where hl is grid size at level l, c1 and c2 weights bias and variance

Assume that similar relationship is valid for subsurface flow

MSE value depends on
- True values of c1 & c2
- Total computational resources

MLMC fails when
- There are restricted computational resources, and c1 � c2

In general c1 and c2 are unknown

1Giles, M. B. Multi-level Monte Carlo path simulation. Oper. Res. 56.
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Two phase flow test

Investigate two test cases

I 60× 60 grid-cells

I 80 assimilation time steps

I Proxy via uniform upscaling

I Model 1: No fault

I Model 2: Dominant
impermeable fault

I Model 1 & 2: computational
resources = 10 full runs

PRO-1q
INJ-1q

PRO-2q

Model 1
INJ-1
q

PRO-1q
Model 2



Uniform upscaling
Grid model 1
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Grid model 1
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Level 4

Grid-size for the various levels

Level 0 47
Level 1 53
Level 2 98
Level 3 243
Level 4 909

Original grid: 3600 grid-cells



Uniform upscaling
Grid model 2
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Grid model 2
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Uniform upscaling
Grid model 2

rINJ-1

rPRO-1

Level 4

Grid-size for the various levels

Level 0 4
Level 1 16
Level 2 71
Level 3 225
Level 4 900

Original grid: 3600 grid-cells



Uniform upscaling
Kernel density estimate of simulator output

WOPR PRO-1 at t=70
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Bias and variance of Cmg
Estimation by bootstrapping

For data assimilation applications estimate of Cmg is important

Evaluate the bias and variance for (Cmg)l for l = 0, 1, 2, 3, 4 by
bootstrapping

Define (Ne)l = (N full
e )l ×

N full
g

(Ng)l

where
∑4

l=0(N
full
e )l = 10

Ensemble size for the various levels

Level 0 Level 1 Level 2 Level 3 Level 4

Model 1 454 209 123 43 9
Model 2 900 500 102 32 12

Calculate bias and variance of (Cmg)l by 2000 replications
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Element wise bias and variance of Cmg
Frobenius norm
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Bias and variance
Estimation by bootstrapping

Keeping the total computational resources fixed on each level we
observe that for both models

– Variance is the dominant factor
– Bias increases with accuracy due to MC error

We cannot calculate bootstrapped estimates of bias and variance
for large cases
– Realistic cases have lower value of computational resources/grid-cells

Analysis of Model 1 & 2 with limited computational resources
– Resources best spent to reduce variance

→ Evaluate two different multilevel algorithms
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Multilevel methods
Multilevel EnKF

MLMC can be extended to the EnKF framework

CML = C0 +

L∑
l=1

(Cl − Cl−1)

the MLEnKF analysis is then

ma = mf + CMLH
T (HCMLH

T + Cd)
−1(d− g(m))

– Converges to the KF solution
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Multilevel methods
Bayesian model average

Let the forecast density be defined by Bayesian model averaging

p(Y |d) ∝ p(d|Y )p(Y ) = p(d|Y )

L∑
l=0

p(Y |Ml)p(Ml)

Each model Ml represents an accuracy level of the proxy

Assume that all densities are Gaussian

Bayesian model averaging utilize all proxy models

– Bias-variance tradeoff adjusted through the weights, p(Ml)
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Multilevel methods
Bayesian model average

New total empirical forecast covariance given by law of total
covariance

I Ctot =
∑L

l=0 p(Ml)Cl +
∑L

l=0 p(Ml)(µl − µ)(µl − µ)T

How to select p(Ml)?

Variance Model 1
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Dashed line: c√

(Ne)l

Select the weights as p(Ml) ∝
√
(Ne)l

– constraints
∑L

l=0 p(Ml) = 1
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Multilevel methods
Bayesian model average – analysis step

Each level has a different forecast bias → update each level
uniquely

ma
l = mf

l + Ctot
mg(C

tot
gg + αlCd)

−1(dl − gl(mf
l ))

αl is selected adaptively

αl =
‖dtrue − gl(mf

l )‖

‖dtrue − gL(mf
L)‖

→ if all models have same accuracy αl = 1 ∀l

In the Gaussian case with linear dynamic models:
– Equally accurate models → Converge to KF
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BMA
Mean example 1

0 10 20 30 40 50
0

10

20

30

40

50

−6

−4

−2

0

2

4

6

8

10

ES with large ensemble

0 10 20 30 40 50
0

10

20

30

40

50

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

BMA



MLEnKF
Mean example 1
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BMA
Mean example 2
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Summary and conclusion

We have investigated multilevel methods for ensemble based data
assimilation

MLMC methods are optimal for cases that are not dominated by
variance, and with unlimited computational resources

Analysis of two simple two-phase flow problems indicates that
MLMC methods are not optimal for these cases

An alternative multilevel method, based on BMA is introduced to
handle such cases
– Method aims to reduce variance
– Method is biased

Numerical DA experiments shows that
– MLEnKF fails to estimate the mean
– The alternative method gives good estimates of the mean
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