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Data assimilation: general formulation

Bayes theorem:

/\ o(aly) = L)
] / | plylz)p(x) da
velocity - The solution is a pdf!

Posterior No inversion!



How big is the Data-Assimilation problem?

.

Store 10 numbers

Store 100 numbers

A model of 1,000,000 variables need storage of 101.900.000 humbers
Estimated number of atoms in the whole universe 1029...

The data assimilation problem is larger then the universe !
Data-assimilation is a problem of finding the best approximation



Nonlinear filtering: Particle filter
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Standard Particle filter




How to make particle filters useful?

1. Introduce localisation to reduce the number of observations.
Combine Particle Filters and Ensemble Kalman Filters or
Gaussian Mixtures

3. Use proposal-density freedom.



3. Exploring the proposal density freedom

The evolution equation for the prior pdf can be written as:
p(a") = [ pa"le" " )pa"") da" !

Use this in Bayes Theorem to find:
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Now consider the particles at time n-1 :
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Bayes Theorem and the proposal density

to find for the posterior pdf:
N
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Now use
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Optimal proposal density
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The optimal proposal density generates new particles by

1

drawing from p(z"™|z? "', y™)  foreachi.

This leads to weights

n—l)

w; X p(yn’%

One can show that the least degenerate proposal of the form
q(a:”\a;?_l, y™) isthe optimal proposal.



A better proposal density

So, Particle Filters can never work? They can, it is easy to come up with
a counter example. Recall the posterior

ny,m Lp("27 ™) niome1on

This can be seen as a so-called mixture density, a weighted sum of
densities. To draw directly from that density:

1. Draw jfrom the weight distribution w,

2. Say we draw i=8. Then draw a sample from p(xn ‘:Cg’_l, yn)
3. Do this N times.

1

This PF has equal weights on the particles, but is not efficient for low N.



How to save the Particle Filter for low N?

For these high dimensional systems interaction among
particles is essential.

* Interaction through resampling is not strong enough as the
weights will be degenerate..

* Extended-space proposals densities that enforce equal
weights via stronger interactions can perhaps save the
particle filter.

* Tryto understand these methods and improve on them
explore the typical set and Hamiltonian Monte Carlo.



Typical Set: high probability mass

Volume dx

p(x[y)

p(x|y) dx

_*J/\——\

Distance from mode



Probability mass concentrates on a
hypersurface surrounding the mode

d = 1000

(‘stolen’ from
Michael Betancourt)
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Distance from centre normalised by sqgrt(dimension)



Is there always a typical set?

For a multivariate standard Gaussian the Central Limit Theorem
gives

e = N, £ /2N,

1
hence €| = /in§

So any particle drawn from the Gaussain will be far away from
the mode!

Unclear for ‘arbitrarily shaped’ pdfs, but intuition and numerical
experimentation suggest there is a typical set.



Generate particles close to typical set

But e.g optimal proposal weights vary enormously.
Can we come up with a particle filter that has all particles on typical
set and has equal weights ?



Hamiltonian Monte Carlo

Metropolis-Hastings (MH) on an extended space:
View state as position variable of a physical system
Introduce velocity variables to move particles in state space

Form Hamiltonian as

p(x,v) = p(z)p(v) x exp [—H (z,v)]
with  H(x,v) = F(x) + K(v)

and p(z|y) < exp|—FE(x)] and p(v) o< exp [—%UTU:|

- Perform MH on this extended space.
- Because Hamiltonian is conserved almost all moves in this extended

space are accepted, even very large moves.



Why does HMC move stay on typical set?

e? dFE

HMC move can be written as :U:'“ = x;k —+ eiPl/QvZ- — 5%

vis drawn iid at every step, so in high-dimensional systems the
component parallel to gradient is small.
So HMC ‘moves around the mode’.



HMC in proposal density of particle filter

1. Use smart particle filter to find particles close to typical set
2. Use HMC to move these particles to equal weight positions
on the set.



Extended state 2-step proposal:

This is a proposal on an extended space (space different from HMC!!!):

N n—1 n—l
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where we just multiplied and divided by a proposal g(...) which
can depend on all previous particles, and with

q(a" @ iy N y") = gt 2y )a(at e y")

This leads to a whole class of particle filters not hampered by
classical proofs of degeneracy.



Example non-degenerate PF

The following particle filter results in equal weights but is also
efficient for small ensemble sizes.

1. For eachidraw Zl?,zk Np($n|$?_1,yn)
2. Foreachidraw &; ~ N(0, P)withP™'=Q '+ H"R'H
. n K 1/2
3. Foreachiwrite " = g~ 4 o; P / fz
And solve for «; in
D ZET-L_ Mol Loy
I 1 Gt

= Ww
g(apat|zi i, )




The Bias

The scheme is biased (or inconsistent) because of the target
weight construction.

It is difficult to quantify the bias because the limit NV — o0 is
not relevant in practice.

If the bias is smaller than the sampling error it is of no concern.

Sampling error estimates are typically not that useful as they

tend to be of the form
C/VN

where C is unknown.

So we have to rely on numerical tests until progress is made on
the maths...



Experiments on Lorenz 1963 model

10,000 independent models Lorenz 1963 models

e 30,000 variables, 10,000 parameters

10 particles

* Observations: N
every 20 time steps, :
first two variables

* Observation errors Gaussian

* HMCstepupto 0(6)




Sequential parameter estimation

P SPDE " = f(z",0) +

 Unknown parameter

" = f(z"7, 0p) - gg

* Modelas 0" =41 4"

(0 —0p) + 0
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40,000 dimensional system (30,000 variables,
10,000 parameters).
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Time evolution mean of first variable system 1, starting 10 lower than true value.



40000 dimensional system (30000 variables,
10000 parameters).
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Time evolution mean of parameter system 1, starting 10 lower than true value.



Parameter mean values (dim=10,000)
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Conclusions

Fully nonlinear non-degenerate particle filters for systems
with arbitrary dimensions (but with bias) have been derived.

The example can be viewed as an optimal proposal step to
move particles to typical set, followed by an HCM step.

Proposal-density freedom needs further exploration
We need good estimate of Q...

We need efficient weak-constraint 4DVar with fixed initial
condition (for small time window). Could use EnsVar ?

Need to explore bias versus MC variance.
Needs mathematical back up...
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