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Data Assimilation for Stochastic Transport Models
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. Talk Synopsis

What is Data Assimilation ?
What is Stochastic Filtering ?
Data Assimilation ⇔ Stochastic Filtering: a dictionary.
Why is the high-dimensional problem hard ?
Stochastic transport models
Data assimilation for STMs

Dan Crisan (Imperial College London) Data Assimilation for STMs 12 June 2017 2 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

. What is DA ?

What is data assimilation ?

Jana de Wiljes, Sebastian Reich, Andrew Stuart ”Data Assimilation: The
Mathematics of Connecting Dynamical Systems to Data, MFO”
The seamless integration of large data sets into computational models provides
one of the central challenges for the mathematical sciences of the 21st century.
When the computational model is based on dynamical systems and the data is
time ordered, the process of combining data and models is called data
assimilation.
Mark Asch, Marc Bocquet, Ma�lle Nodet, “Data Assimilation: Methods,
Algorithms, and Applications”
Data assimilation is an approach that combines observations and model
output, with the objective of improving the latter.
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. What is DA ?

Peter Jan van Leeuwen, ”Nonlinear Data Assimilation for high-dimensional
systems �with geophysical applications.
Data assimilation combines past knowledge of a system in the form of a
numerical model with new information about that system in the form of
observations of that system.
Sebastian Reich, Colin Cotter, “Probabilistic Forecasting and Bayesian Data
Assimilation”
Data assimilation was coined in the computational geoscience community to
describe methodologies for improving forecasting skill by combining measured
data with computer generated forecasts. More specifically, data assimilation
algorithms meld computational models with sets of observations in order to,
for example, reduce uncertainties in the model forecasts or to adjust model
parameters.
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. What is stochastic filtering ?

Stochastic filtering
The process of using partial observations and a stochastic model to make

inferences about an evolving dynamical system.

Courtesy of Oana Lang (Imperial College London)
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The Filtering Problem Framework: discrete/continuous time

X the signal process - “hidden component”
Y the observation process - “the data”

The filtering problem: Find the conditional distribution of the signal Xt given
Yt = σ(Ys, s ∈ [0, t]), i.e.,

πt (A) = P(Xt ∈ A|Yt), t ≥ 0, A ∈ B(Rd).

Discrete framework:

{Xt}t≥0 Markov chain P (Xt ∈ dxt|Xt−1 = xt−1) = ft(xt|xt−1)dt,
{Xt,Yt}t≥0 P (Yt ∈ dy|Xt = xt) = gt(y|xt)dy

Continuous framework:

dXt = f(Xt)dt+ σ(Xt)dVt,

dYt = h(Xt)dt+ dWt.
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The Filtering Problem How do we define an approximation ?

The description of a numerical approximation for the solution of the filtering
problem should contain three parts:

particle approximations Gaussian approximations
(aj (t)︸ ︷︷ ︸
weight

, v1
j (t) , . . . , vd

j (t)︸ ︷︷ ︸
position

)n
j=1 (aj (t)︸ ︷︷ ︸

weight

, v1
j (t) , . . . , vd

j (t)︸ ︷︷ ︸
mean

, ω11
j (t) , . . . , ωdd

j (t)︸ ︷︷ ︸
covariance matrix

)n
j=1

πt  πn
t =

∑n
j=1 aj (t) δvj(t) πt  πn

t =
∑n

j=1 aj (t)N (vj (t) , ωj (t))

2. The law of evolution of the approximation:

particle approximations Gaussian approximations

πn
t

mutation︷︸︸︷−→
model

π̄n
t+δ

selection︷︸︸︷−→
{Ys}s∈[t,t+δ]

πn
t+δ πn

t

forecast︷︸︸︷−→
model

π̄n
t+δ

assimilation︷︸︸︷−→
{Ys}s∈[t,t+δ]

πn
t+δ

3. The measure of the approximating error:

sup
φ∈Cb

E [|πn
t (φ)− πt(φ)|] , π̂t − π̂n

t , ∥πn
t − πt∥TV.

Dan Crisan (Imperial College London) Data Assimilation for STMs 12 June 2017 7 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Filtering Problem Quantized information = particles

The quantized information is modelled by n stochastic processes

{pi(t), t > 0} i = 1, ..., n, pi(t) ∈ RN.

We think of the processes pi as the trajectories of n (generalized) particles.
Typically N > d, where d is the dimension of the state space.

πn
t = Λn

t (pi(t), t > 0 i = 1, ..., n).

Generalized particle filters:
classical particle filters
gaussian approximations
wavelets
grid methods
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The Filtering Problem The classical particle filter

The classical/standard/bootstrap/garden-variety particle filter

πn = {πn(t), t ≥ 0} the occupation measure/empirical distribution of a
sequence of a system of weighted particles

πn(0) =
n∑

i=1

1
nδxn

i
−→ πn(t) =

n∑
i=1

ān
i (t)δVn

i (t).
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The Filtering Problem The classical particle filter

Courtesy of Oana Lang (Imperial College London)

Theorem
πn converges to π. Moreover

sup
t∈[0,T]

sup
{φ∈C1

b(Rd), ∥φ∥r
1,∞≤1}

∥πn
t (φ)− πt(φ)∥p ≤ α(T,p)√

n .

Dan Crisan (Imperial College London) Data Assimilation for STMs 12 June 2017 10 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Filtering Problem The classical particle filter

Remarks:

If d is small to moderate, then the standard particle filter can perform
very well in the time parameter n.
Under certain conditions, the Monte Carlo error of the estimate of the
filter can be uniform with respect to the time parameter.
The function xk 7→ g(xk, yk) can convey a lot of information about the
hidden state, especially so in high dimensions. If this is the case, using
the prior transition kernel f(xk−1, xk) as proposal will be ineffective.
It is then known that the standard particle filter will typically perform
poorly in this context, often requiring that N = O(κd).

10−3.5

10−3

10−2.5

10−2

5 10 15 20 25 30
DimensionWa

llc
loc

kt
im

ep
ert

im
est

ep
(se

con
ds) Algorithm PF STPF

Figure: Computational cost per time step to achieve a predetermined RMSE versus
model dimension, for standard particle filter (PF) and STPF.
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The Filtering Problem Why is the high-dimensional problem hard ?

Consider
Π0 = N (0, 1) (mean 0 and variance matrix 1).
Π1 = N (1, 1) (mean 1 and variance matrix 1).
Πd = N (d, 1) (mean d and variance matrix 1).
d(Π0,Π1)TV = 2P [ |X| ≤ 1/2 ], X ∼ N(0, 1).
d(Π0,Πd)TV = 2P [ |X| ≤ d/2 ], X ∼ N(0, 1).
as d increases, the two measures get further and further apart, becoming
singular w.r.t. each other.
as d increases, it becomes increasingly harder to use standard importance
sampling, to construct a sample from Π3 by using a proposal from Π1,
weighting it using dΠd

dΠ0
and (possibly) resample from it.
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The Filtering Problem Why is the high-dimensional problem hard ?

Consider
Π0 = N ((0, . . . , 0), Id) (mean (0, . . . , 0) and covariance matrix Id).
Πd = N ((1, . . . , 1), Id) (mean (1, . . . , 1) and covariance matrix Id).
d(Π0,Πd)TV = 2P [ |X| ≤ d/2 ], X ∼ N(0, 1).
as d increases, the two measures get further and further apart, becoming
singular w.r.t. each other exponentially fast.
it becomes increasingly harder to use standard importance sampling, to
construct a sample from Πd by using a proposal from Π0.
‘Moving’ from Π0 to Πd is equivalent to moving from a standard normal
distribution N (0, 1) to a normal distribution N (d, 1) (the total variation
distance between N (0, 1) and N (d, 1) is the same as that between Π1 and
Π2).

Remedies:

• Tempering * • Hamiltonian Monte Carlo
• Sequential data assimilation in space * • Jittering
• Model Reduction (High 7→Low Res)* • Nudging
• Using hybrid models • Localization
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The Filtering Problem Remedies

Discrete framework:

{Xt}t≥0 Markov chain P (Xt ∈ dxt|Xt−1 = xt−1) = ft(xt|xt−1)dxt,

{Xt,Yt}t≥0 P (Yt ∈ dyt|Xt = xt) = gt(yt|xt)dyt

Remedies:
• a tempering procedure For i = 1 to d

◦ reweight the particle using g
1
d
t and (possibly) resample from it

◦ move particles using an MCMC that leaves g
k
d
t ftΠ[0,t−1] invariant

Beskos, DC, Jasra, On the stability of SMC methods in high dimensions, 2014.
Kantas, Beskos, Jasra, Sequential Monte Carlo for inverse problems, 2014.
• Sequential data assimilation in space
Assume that there exists an increasing sequence of sets {Ak,j}

τk,d
j=1 , with

Ak,1 ⊂ Ak,2 ⊂ · · · ⊂ Ak,τk,d = {1 : d}, for some integer 0 < τk,d ≤ d, such that
we can factorize:

g(xk, yk)f(xk−1, xk) =

τk,d∏
j=1

αk,j(yk, xk−1, xk(Ak,j)),

for appropriate functions αk,j(·), where xk(A) = {xk(j) : j ∈ A} ∈ R|A|.
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The Filtering Problem Remedies

This holds when:
• one can obtain a factorization for the prior term f(xk−1, xk) by marginalising
over subsets of co-ordinates.
• the likelihood component g(xk, yk) can be factorized when the model
assumes a local dependence structure for the observations.

For j = 1 to τd − 1
◦ Move particle according to qk+1,j(xk+1(Ak+1,j)|xk, xk+1(Ak+1,j−1)).
◦ weight the particle using αk+1,j(yk+1,xk,xk+1(Ak+1,j−1))

qk+1,j(xk+1(Ak+1,j)|xk,xk+1(Ak+1,j−1))
and

(possibly) resample from it.
Beskos, CD, Jasra, Kamatani, Zhou, A Stable Particle Filter in
High-Dimensions, 2017
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The Filtering Problem Remedies

• jitter the particle

◦ reweight the particle using g
1
d
t and (possibly) resample

◦ move particles using a suitable chosen kernel

D. C., Joaquin Miguez, Nested particle filters for online parameter estimation
in discrete-time state-space Markov models, http://arxiv.org/abs/1308.1883.
D. C., Joaquin Miguez, Uniform convergence over time of a nested particle
filtering scheme for recursive parameter estimation in state–space Markov
models, https://arxiv.org/abs/1603.09005.

• stay on the typical set by using Hamiltonian Monte Carlo
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The Filtering Problem Connection with geometric mechanics

The stochastic transport models we study are inspired from geometric
mechanics. Holm (2015) introduced a new set of stochastic PDEs modelling
the motion of an either compressible, or incompressible fluid in R3 resulting
from a stochastically constrained variational principle δS = 0, with action, S,
given by

S(u,p, q) =
∫ (

ℓ(u, q)dt+ ⟨p , dq+ Ldxtq ⟩V

)
, (1)

• ℓ(u, q) unperturbed deterministic fluid Lagrangian, written as a functional of
velocity vector field u and advected quantities q.
• ⟨ p , q ⟩V :=

∫
< p(x), q(x, t) > dx, q ∈ V and their dual elements p ∈ V∗.

• Ldxtq is the Lie derivative of the advected quantity q ∈ V, along a vector
field dxt

dxt(x) = u(x, t)dt−
∑

i
ξi(x) ◦ dWi(t) . (2)

• the methodology incorporates physically meaningful stochastic perturbations
in fluid dynamics equations.
DD Holm, Variational principles for stochastic fluid dynamics, Proc. R. Soc.
A 471, 2015.
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The Filtering Problem Connection with geometric mechanics

The SPDEs resulting from the SVP δS = 0 has the form

d δℓ
δu + Ldxt

δℓ

δu − δℓ

δq ⋄ q dt = 0 , and dq+ Ldxtq = 0 , (3)

The diamond operation (⋄) : T∗V → X∗ is defined for a vector space V with
(q,p) ∈ T∗V and vector field ξ ∈ X is given by ⟨p ⋄ q , ξ ⟩X := ⟨p , −Lξq ⟩V for
the pairings ⟨ · , · ⟩V : T∗V× TV → R and ⟨ · , · ⟩X : X∗ × X → R with
p ⋄ q ∈ X∗.

If we choose in equation (3) the Lagrangian

l(u) = 1
2∥u∥

2
L2 =

1
2

∫
|u|2d3x

that is, the kinetic energy of the incompressible fluid, constrained to only
allow divergence free velocity vector fields, independent of the advected
variable q, and compute the curl of right hand side we obtain the stochastic
Euler equation.
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The Filtering Problem The two-dimensional Barotropic flow equation

Two dimensional incompressible fluid flow u defined on 2D-torus
Ω = [0,Lx]× [0,Ly] modelled by the two-dimensional Euler equations with
forcing and dampening. Let q = ẑ× curlu denote the vorticity of u, where ẑ
denotes the z-axis. For a scalar field g : Ω → R, we write ∇⊥ g = (−∂yg, ∂xg)T.
Let ψ : Ω× [0,∞) → R denote the stream function.

∂tq+ (u ·∇) q = Q− rq
u = ∇⊥ ψ

∆ψ = q.

where
Q is the forcing term given by Q = 0.1 sin (8πx)
r is a positive constant that can be interpreted as defining the large scale
dissipation time scale.
we consider slip flow boundary condition ψ

∣∣
∂Ω

= 0.
we use FireDrake to solve the PDE.
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The Filtering Problem The two-dimensional Barotropic flow equation

The ”true system” is approximated by an SPDE defined on a coarser grid.
Signal

∂tq+ (u ·∇) q+
∞∑

k=1
(ξk · ∇) q ◦ dBk

t = Q− rq

u = ∇⊥ ψ

∆ψ = q.

ξk are divergence free given vector fields
ξk are computed from the true solution by using an empirical orthogonal
functions (EOFs) procedure
Bk

t are scalar independent Brownian motions
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The Filtering Problem The two-dimensional Barotropic flow equation

Observations:

u is observed on a subgrid of the signal grid (t continuous/discrete)

yi(t) = u(xi, t) + εξi. ξi ∼ N(0, 1).

ε is calibrated to the standard deviation of the true solution over a coarse
grid cell.

Initialization (1000 particles):
run the SPDE on the interval [−a, 0] initialized at time −a with the
projection of the true (deterministic) solution on the coarse grid.
evolve the projection of the true (deterministic) solution on the coarse
grid with a random velocity.

Data Assimilation Algorithm:
Forecast: Particles are evolved according to the SPDE with informed
importance sampling step.
Analysis: Adapted tempering procedure.
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The Filtering Problem Collaborators

Colin Darryl Wei Igor

Oana Peter Jan Roland Ajay

Nikolas Francesc Alex Joaquin
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