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Outline

Ensemble Smoother with Multiple Data Assimilation
(ES-MDA)

Discrepancy principle and choice of inflation factors in
ES-MDA

Convergence (after Geir Evensen)
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ES-MDA

Define

∆M f ,i =
1

p

Ne − 1

h

m f ,i
1 − m̄ f ,i , ..., m f ,i

Ne
− m̄ f ,i

i

, (1)

and

∆D f ,i =
1

p

Ne − 1

h

d f ,i
1 − d̄ f ,i , ..., d f ,i

Ne
− d̄ f ,i

i

, (2)

where d̄ f ,i =
�

1/Ne
�
∑

j d f ,i
j and m̄ f ,i =

�

1/Ne
�
∑

j m f ,i
j .
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ES-MDA Algorithm

1 Choose the number of data assimilations, Na, and the
coefficients, αi for i = 1, ..., Na.

2 Generate initial ensemble {m f ,1
j }

Ne
j=1

3 For i = 1, ..., Na:
(a) Run the ensemble from time zero,
(b) For each ensemble member, perturb the observation vector

with the inflated measurement error covariance matrix, i.e.,
d i

uc, j ∼N (dobs,αiCD).
(c) Use the update equation to update the ensemble.

ma,i
j = m f ,i

j +∆M f ,i(∆D f ,i)T
�

∆D f ,i(∆D f ,i)T +αiCD

�−1
�

d i
uc,j − d f ,i

j

�

m f ,i+1
j = ma,i

j

Comment: Requires
∑Na

k=1
1
αk
= 1.
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Dimensionless Sensitivity

The dimensionless sensitivities control the change in model
parameters that occurs when assimilating data (Zhang et al., 2003;
Tavakoli and Reynolds, 2010). The standard dimensionless
sensitivity is defined as

bG i
D ≡ C−1/2

D G(m̄ f ,i)C1/2
M , (3)

where G(m) is the sensitivity matrix for d f (m) where

bgi, j =
∂ d f

i (m)
∂m j

. (4)

Dimensionless sensitivity matrix components are

gi, j =
σm, j

σd,i

∂ d f
i

∂m j
. (5)

The direct analogue of the standard dimensionless sensitivity matrix
in ensemble based methods is given by

G i
D ≡ C−1/2

D ∆D f ,i ≈ C−1/2
D G(m̄ f ,i)∆M f ,i . (6)
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ES-MDA Update Equation

Recall the ES-MDA update equation

ma,i
j = m f ,i

j +∆M f ,i(∆D f ,i)T
�

∆D f ,i(∆D f ,i)T +αiCD

�−1
�

d i
uc,j − d f ,i

j

�

(7)
Using the definition of the dimensionless sensitivity
(G i

D ≡ C−1/2
D ∆Di), we can write ES-MDA update equation as

ma,i
j = m f ,i

j +∆M f ,i(G i
D)

T
�

G i
D(G

i
D)

T +αi INd

�−1
C−1/2

D

�

d i
uc, j − d f ,i

j

�

. (8)

for j = 1, ..., Ne.
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Why do we need damping?

ES similar to doing one GN iteration with full step using the
same average sensitivity coefficient to update each ensemble
method with the forecast as the initial guess.

O(m) =
1

2
‖ m− m̄ ‖2

C−1
M
+

1

2
‖ d f (m)− dobs ‖2C−1

D

GN based on approximating O(m) by a quadratic but far from
a minimum quadratic approximation good only in small
region around current model. TR better than line search.

Proof of convergence of GN requires the possibility of taking a
full (unit) step.

Juris Rommelsee, PhD thesis, TU Delft (2009).
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Least Squares Problem

Similar to Eq. 8, one can update the mean of m directly as

m̄a,i = m̄ f ,i +∆M f ,i(G i
D)

T
�

G i
D(G

i
D)

T +αi INd

�−1
C−1/2

D

�

dobs − d̄ f ,i
�

. (9)

It is easy to show that m̄a,i is the solution of the regularized least squares
problem given by

xa,i = argmin
x

�

1

2





G i
D x − y







2
+
αi

2
‖x‖2

�

, (10)

where

x = (∆M f ,i)+
�

m− m̄ f ,i
�

, (11)

y = C−1/2
D

�

dobs − d̄ f ,i
�

, (12)

where (∆M f ,i)+ is the pseudo-inverse of ∆M f ,i .
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Discrepancy Principle

Assume
‖y‖= ‖C−1/2

D

�

dobs− d̄ f ,i
�

‖> η, (13)

where η is the noise level given by

η2 = ‖C−1/2
D

�

dobs− d f (mtrue)
�

‖2 ≈ Nd . (14)

Based on the discrepancy principle the minimum
regularization parameter, αi , should be selected such that

η= ‖G i
D xa,i − y‖=‖ C−1/2

D (d̄a − dobs) ‖ . (15)
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Discrepancy Principle

From Eqs. 13 and 15 we can write

‖C−1/2
D

�

dobs − d̄ f ,i
�

‖> η= αi
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D(G

i
D)

T +αi INd

�−1
C−1/2

D
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dobs − d̄ f ,i
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 . (16)

Therefore, for some ρ ∈ (0, 1)

ρ‖C−1/2
D

�

dobs − d̄ f ,i
�

‖= αi










�
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D(G

i
D)

T +αi INd

�−1
C−1/2

D

�

dobs − d̄ f ,i
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 . (17)

Hanke (1997) proposed RLM:

ρ2







C−1/2
D

�

dobs − d̄ f ,i
�










2
≤ α2

i










�

G i
D(G

i
D)

T +αi INd

�−1
C−1/2

D

�

dobs − d̄ f ,i
�










2
. (18)

Iglesias (2015) used Eq. 18 for choosing inflation factors in his
version of ES-MDA (IR-ES).

Le et al. (2015) used a much stricter condition based on Eq. 18 for
choosing inflation factors in ES-MDA-RLM.
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An Analytical Procedure for Calculation of Inflation
Factors

Recall that

ρ2







C−1/2
D

�

dobs − d̄ f ,i
�










2
≤ α2

i
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G i
D(G

i
D)

T +αi INd

�−1
C−1/2

D

�

dobs − d̄ f ,i
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2
. (18)

Using the definitions of y = C−1/2
D

�

dobs − d̄ f ,i
�

and C ≡ G i
D(G

i
D)

T +αi INd
,

ρ2 ≤ α2
i





C−1 y






2





y






2 . (19)





C−1 y






2





y






2 ≥min
j
γ2

j =min
j

1
�

λ2
j +αi

�2 =
1

�

λ2
1 +αi

�2 (20)

where γ j ’s are the eigenvalues of C−1 and λ j ’s are the singular values of
G i

D.
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An Approximate Method for Inflation Factors

Instead of enforcing

ρ2 ≤ α2
i

1
�

λ2
1 +αi

�2 ,

we use
ρ2 ≤ α2

i
1

�

λ
2
+αi

�2 , (21)

αi =
ρ

1−ρ
λ

2
(22)

where λ is the average singular value of G i
D given by

λ=
1

N

N
∑

j=1

λ j where N =min{Nd , Ne}. (23)

Motivation: Discrepancy principle overestimates the optimal inflation
factor in the linear case.

We use ρ = 0.5, so αi = λ
2
.
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ES-MDA with Geometric Inflation Factors

Specify the number of data assimilation steps (Na).

Assume that the inflation factors form a monotonically decreasing
geometric sequence:

αi+1 = β
iα1, (24)

Determine

α1 = λ
2
=





1

N

N
∑

j=1

λ j





2

. (25)
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ES-MDA with Geometric Inflation Factors

Recall that ES-MDA requires that

1=
Na
∑

i=1

1

αi
=

Na
∑

i=1

1

β i−1α1

Solve
1− (1/β)Na−1

1− (1/β)
= α1, (26)

for β .

We call the proposed method ES-MDA-GEO.
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Comments on “Convergence” of ES-MDA

Classifying ES-MDA as an iterative ES may be augmentable;
stops when

∑Na
k=1

1
αk
= 1.

Criterion based on ensuring methods samples correctly in the
linear Gaussian case as ensemble size goes to infinity.

Analogue of Hanke’s suggestion for RLM, should terminate
ES-MDA when

1

Nd
‖C−1/2

D

�

dobs− d̄ f ,i
�

‖2 < τ2

where τ > 1/ρ = 2.

This means, terminate when the normalized objective
function is less that 4.

GE: Does ES-MDA converge as Na→∞? To what?

Reynolds Modified ES-MDA Algorithms for Data Assimilation and Uncertainty QuantificationJune 14, 2017 (15/29)



Numerical Examples

The performance of ES-MDA-GEO is compared to IR-ES,
ES-MDA-RLM and ES-MDA-EQL.

To investigate the performance of the methods, we define the
following measures:

RMSE=
1

Ne

Ne
∑

j=1





1

Nm

Nm
∑

k=1

(mtrue,k −m j,k)
2





1/2

, (27)

σ =
1

Nm

Nm
∑

k=1

σk , (28)

ONd =
1

NeNd

Ne
∑

j=1

(d f
j − dobs)

T C−1
D (d

f
j − dobs). (29)
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Example 1: 2D Waterflooding
Two-dimensional waterflooding problem:

64×64×1 grid.

9 production wells (BHP control).

4 injection wells (BHP control).

Observed data:

Oil and water production rates and water
injection rates.

Standard deviations of measurement
error: 3% of true data.

Data from the first 36 months are
history-matched and data for next 20 are
used for prediction.

Model parameters:

The gridblock log-permeabilities are
considered as the model parameters.
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Example 1: Results

An ensemble of 400 realizations is generated from the prior
distribution.

First inflation factor from DP is 1049.4; Na of 4 and 6, respectively,
give β equal to 0.102 and 0.264.

Comment IR-ES with ρ = 0.8 did not converge after 200 iterations.

Prior
ES-MDA-RLM IR-ES ES-MDA-EQL ES-MDA-GEO
ρ=0.5 ρ=0.5 Na =4 Na =6 Na =4 Na =6

RMSE 2.23 0.613 0.902 1.45 1.09 0.586 0.633
σ 0.995 0.334 0.517 0.258 0.255 0.380 0.362
ONd 16121 1.06 8.14 8.45 1.344 25.2 5.78
Iter - 21 9 4 6 4 6
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The posterior mean of the log-permeability
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(b) ES-MDA-EQLx4
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(c) ES-MDA-EQLx6
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(d) ES-MDA-GEOx4
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(e) ES-MDA-GEOx6
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(f) ES-MDA-RLM 0.5
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(g) IR-ES 0.5
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“Convergence” Results

Prior ES-MDA-EQL ES-MDA-GEO
Iter - 4 8 16 32 64 4 8 16 32 64
RMSE 2.23 1.451 0.977 0.969 0.838 0.732 0.586 0.537 0.553 0.560 0.585
σ 0.995 0.258 0.257 0.267 0.275 0.284 0.380 0.351 0.329 0.317 0.312
ONd 16121 8.451 1.094 0.947 0.907 0.922 25.246 6.689 1.413 0.978 0.905

Table: Effect of number of iteration on ES-MDA
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Posterior S.D. Versus Na with 95% Truncation

(a) EQLx4 (b) EQLx8 (c) EQLx16 (d) EQLx32

(e) GEOx4 (f) GEOx8 (g) GEOx16 (h) GEOx32
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Posterior S.D. Versus Na with 95% Truncation

(a) EQLx8 (b) EQLx16 (c) EQLx32 (d) EQLx64

(e) GEOx8 (f) GEOx16 (g) GEOx32 (h) GEOx64
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Posterior Mean Versus Na with 95% Truncation

(a) EQLx4 (b) EQLx8 (c) EQLx16 (d) EQLx32

(e) GEOx4 (f) GEOx8 (g) GEOx16 (h) GEOx32
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Posterior Mean Versus Na with 95% Truncation

(a) EQLx8 (b) EQLx16 (c) EQLx32 (d) EQLx64

(e) GEOx8 (f) GEOx16 (g) GEOx32 (h) GEOx64
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Data Match - P7 Water Rate

(a) EQLx8 (b) EQLx16 (c) EQLx32 (d) EQLx64

(e) GEOx8 (f) GEOx16 (g) GEOx32 (h) GEOx64
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Data Match - P3 Oil Rate

(a) EQLx8 (b) EQLx16 (c) EQLx32 (d) EQLx64

(e) GEOx8 (f) GEOx16 (g) GEOx32 (h) GEOx64
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Data Match - I4 Injection Rate

(a) EQLx8 (b) EQLx16 (c) EQLx32 (d) EQLx64

(e) GEOx8 (f) GEOx16 (g) GEOx32 (h) GEOx64
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Results

Prior ES-MDA-EQL ES-MDA-GEO
Iter - 4 8 16 32 64 4 8 16 32 64
RMSE 2.23 1.451 0.977 0.969 0.838 0.732 0.586 0.537 0.553 0.560 0.585
σ 0.995 0.258 0.257 0.267 0.275 0.284 0.380 0.351 0.329 0.317 0.312
ONd 16121 8.451 1.094 0.947 0.907 0.922 25.246 6.689 1.413 0.978 0.905

Table: Effect of number of iteration on ES-MDA
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Summary and Conclusions

We presented analytical expression that enables the exact
calculation of the minimum inflation factor that satisfies the
inequality derived from the discrepancy principle that is the basis of
IR-ES.

The ES-MDA-GEO algorithm developed here is an efficient data
assimilation method that allows the user to specify a priori the
number of data assimilation step.

ES-MDA-GEO is more robust than using the original ES-MDA
algorithm with equal inflation factors.

ES-MDA-GEO and ES-MDA-equal appear to converge to different
distributions. Which is best?

The performance of IR-ES highly depend on the parameters ρ, and
IR-ES with ρ = 0.8 (suggested by the author) did not converge after
200 iterations.
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