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Problem description

Consider the underlying and unobservable dynamics

n+1 n+1
Upt1 = Up + / a(uy) dt +/ b(uy) dW(t)

=:V(up)

with u, € R, and Lipschitz continuous a : RY 5 RY and b: RY — Rdx‘?.

And noisy observations
Yn = Hup + n,
with i.id. v ~ N(0,T) and H € Rk*d.
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Problem description

Consider the underlying and unobservable dynamics

n+1 n+1
Upt1 = Up + / a(uy) dt +/ b(uy) dW(t)

=:V(up)

with u, € R, and Lipschitz continuous a : RY 5 RY and b: RY — Rdx‘?.

And noisy observations
Yn = Hup + n,
with i.id. v ~ N(0,T) and H € Rk*d.
Objective: Let Y, := (y1,y2,...,¥n) and let Y°P® be a sequence of fixed
observations. Construct an efficient method for tracking u,|(Y, = Y25).
That is, approximate
E [6(un)| Yo = V5**]

for an observable ¢ : RY — R.
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Problem description

Consider the underlying and unobservable dynamics

n+1 n+1
Upt1 = Up + / a(uy) dt +/ b(uy) dW(t)

=:V(up)

with u, € R, and Lipschitz continuous a : RY 5 RY and b: RY — Rdx‘?.

And noisy observations
Yn = Hup + n,
with i.id. v ~ N(0,T) and H € Rk*d.
Objective: Let Y, := (y1,y2,...,¥n) and let Y°P® be a sequence of fixed
observations. Construct an efficient method for tracking u,|(Y, = Y25).
That is, approximate
E [6(un)| Yo = V5**]

for an observable ¢ : RY — R.
Abuse of notation: will write u,| Yo" to represent u,|(Y, = YoP).
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Ensemble Kalman Filtering
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Ensemble Kalman Filtering

Predict
Compute (numerical solutions of) M particle paths one step forward

/\7,,_’_17,' = \U(v,,7,-,w,-) for i = ].,2, ey M.

Compute sample mean and covariance

AnM+1 Em[Vi+1]

CS = Covm[Unta]

1 M

where EM[VH+1] = M Vn+1,i
i=1

and  Covm[Vnt1] = Em[Vas1V) 1] — Em[Vas1](Em[Visa]) "
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Ensemble Kalman Filtering Il

Update

Generate signal observations for the ensemble of particles
Yny1i = y,?lﬂsl +Ynt1,i fori=1,2..., M,
with i.i.d. Yn+1,1 ~ N(O, F).

Use signal observations to update particle paths

Vnt1,i = (I — n+1H)Vn+1 it Kn+1}’n+1 i

where 111\4Tr(1 - Cn+1 ( Cn+1HT + r)

Note: After the first step, all particles are correlated due to K}5.
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From EnKF to mean field EnKF

For studying convergence properties of EnKF it is useful to introduce the

mean field EnKF (MFEnKF)

i = V(i w) Kot
Pr rf'nM—t-Fi =E [@E,] Up Q Pnt1,i
CMFl = COV[W)E;J]’ Vrlr\iFl,i

and in comparison, EnKF
Vn+1,i = ‘U(Vn,i, wi) KM(E
Pr @anl = Em[Vay1]  Upq Jnt1,i
C,l,\ﬁ[r? = Covp[Vni1] Vit

= CMEHT(HCMEHT 4 1)~
obs

= Ypt1 T Vnti,i
= (I — KMEH)WME  + KM e

= CMSHT(HCMSHT +1)7!
= ,?Ei + Vnt1,i
= (I = KYISH)Vns1,i + KT Fnr,i-
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From EnKF to mean field EnKF

For studying convergence properties of EnKF it is useful to introduce the
mean field EnKF (MFEnKF)

“MF _ MF .. MF _ AMF T (4 ~MF T -1
Vpt1,i _\U(vm, ,wj) Kyi = C,,HH (HC,,HH +1)
SMF  _ m [oMF - . _ ,obs .

Pr mn+1 =E [Vn+1,i] Up Yn+1,i = yn+1 + Yn+1,i
~AMF “MF MF _ MF MF MF ~ .
G = COV[Vn+1,i]’ Vat1,i = (I - Kot H)Vn+1,i + Koy Vo1,

and in comparison, EnKF

= _ MC _ AMC YTy MC YT -1
Vntl,i = \U(Vn,iywi) Kn+1 - Cn+1H (HCn+1H + r)
/\MC _ ~ ~ _ b

Primiy = Eml[Varal  UpqQ Va1 = yoil +7nt1.
~M " M -~ MC ~
QIS = Covm([Vnia] Vari = (I — KNS H)Var1i + K)1GVnsn,i-

m When underlying dynamics is linear with Gaussian additive noise and
up Gaussian, it holds that ¥ (dx) = P (uj € dx|Y3P), where
pME — Law(v},\f[,-F).

m In nonlinear settings, we use as approximation goal

/ QZ)(X)HE/IF(C’X). NB!(M}\;IF £ P (Un c -\Y;bs> )
RY
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Convergence of EnKF

Theorem 1 (Le Gland et al. (2009))

Consider the dynamics and observations,

Upy1 = f(un) + £n+17 §n+l ~ N(Oa Z)v
Yn+1 = HunJrl + Yn+1,  VYnt+1 N(Oa r)a

and assume ug € LP(Q2) for any p > 1, and that

max(|f(x)—f(x)], |p(x) = ¢(x)]) < Clx=x'|(1+|x[*+[x[*), foran s > 0.

Then, for the EnKF update ensemble {Vn,i}il\iy

Zq””’ - [ o

for any order p > 1 and finite n.

M>1

sup VM (E

P71\ /P
]) <o

Extension to further nonlinear settings in [Law et al. (2014)]. 8
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Computational cost of EnKF

m To meet the constraint

([ [

one thus needs ensemble of size M = O(e72).

py\ /P
of])" o0

m How does the computational cost increase if the EnKF dynamics has
to be sampled using a numerical solver for which
E[Va:— V]| = O(At)?

m Short answer (under additional assumptions): the cost increases to
O(e_(2+1/a)).
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Multilevel ensemble Kalman filtering
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Multilevel EnKF (MLEnKF)

Prediction

m Compute an ensemble of particle paths on a hierarchy of accuracy
levels

=0—1 -1 -1 =57 — Wi A i
Vntl,i = v ( Vn,i 7(“)@,1')7 Vnt1,i = v (Vn,i7wZ,l)7

for the levels £ =0,1,...,Land i =1,2,..., M,.

m Multilevel approximation of mean and covariance matrices:
ML Z
mpi1 = EM{[ n+1]

n+1 - Z COV/W [Vn+1] COVM([ +1]
/=0

Notice the telescoping properties E[ n+1} =E [V,fﬂ] and
E[CMY] = Cov(vh,) + O(1/My).
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MLEnKF update step

Update
For{=0,1,....,Land i=1,2,..., My,
=0 b ¢ - ¢
Yn+1,i = y;r)-;-si + VYnt1,is iid. Yn+1,i ~ N(0,T)
-1 ML p\f—1 ML ~¢
Vn+1,i = (l - Kn—l—lH)Vn-i-l,i + Kn—l—lyn—i—l,i:

¢ ML 7\t ML ~¢
Vo = (I = KpfiH) Vg1 + KniVns1is

where KML = 5,%1“1HT(H6MLL1HT +0)7t
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Convergence of MLEnKF

For observables ¢ : R? — R, introduce notation

L

L((ZS Z I\:;qus( Vn,i) — n,l )

)= [ ol

Question: Under what assumptions and at what cost can one achieve

lin™(0) = 1" (D)l o) = O(€)?

and

13 /24



Assumption 1

Consider the dynamics
n+1 n+1
e = i) = +/ a(ut)dt—i—/ b(ue)dW(t), n=0,1,...

with ug € NpenLP(Q) and a hierarchy of numerical solvers {W¢}2 .
Furthermore, assume the observable ¢ : RY — R satisfies

6(x) — d(x)| < Clx — X|(1 + |x|* + [x'|%), for an's >0,

that there exists positive constants a,, 3 > 0, and an positive exponentially
increasing sequence { Ny}, such that for all u,v € NpenLP(Q),

(i) [E[o(W(u)) — d(W(v)]| S N, provided that [E[u—v]| < N, °,
(il) oW (v)) = (W (W)lp S N7, for all p > 1,
(i) Cost (WE(v)) < N,.




Theorem 2 (MLEnKF accuracy vs. cost)

Suppose Assumption 1 holds. Then, for any e > 0 and p > 2, there exists
an L >0 and {M,}-_ such that

I (0) — un T (D) llp S €.
And

([log(e)|*~"e) 2, if B>1,
Cost (MLEnKF) < { (|log(e)|*"€)~2 llog(e)|*, if =1, (1)
(llog(e)-e)=(+537), if g<1.
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Theorem 2 (MLEnKF accuracy vs. cost)

Suppose Assumption 1 holds. Then, for any € > 0 and p > 2, there exists
an L >0 and {M,}-_ such that

ln™ () — ™ (D) llp S €
And

(llog(e)[*~"€e)~2, if 8>1,
Cost (MLEnKF) < { (Jlog(e)[2="€)2|log(e)®, if B=1, (1)
(log(e) ey~ +5),if p<1.

In comparison,
1™ F (0) — 1" (D) lp S e,

is achieved at cost O (e_(”é)).

15 /24



Central idea in the proof

Introduce

phEME (6 Z Z¢ Y wie)) = (v (wie))

T (9) = JE [¢(V3AF L)] ,
and bound MLEnKF error by

lin™(#) = 1™ (D)lp < [lpn™ (@) = 1™ ()],
IIMMLMF(¢) s D)o + Nl () = i ()l

L _
CZ Hve - VMF.,I{HA + ||V,£VIF’£ - V},\/IF’Z 1||ﬁ T |E{¢(VMF,L) B (/)(VMF)H
— n n P M1/2 n n
=0 0
L
< ym )
=0
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Numerical examples
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Numerical example

Underlying dynamics is the Ornstein—Uhlenbeck SDE
du = —udt + 0.5dW(t),
with a set of observations
Yn = Un + Vn, ii.d.~vp~ N(0,0.04)

Solvers: Hierarchy of Milstein solution operators {\Ug}éfzo with
At =0 (274).

Compare the approximation errors for the observable ¢(x) = x in terms of
the RMSE
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Numerical example

Underlying dynamics is the Ornstein—Uhlenbeck SDE
du = —udt + 0.5dW/(t),

with a set of observations

Yn = Up + Yn, ii.d.~vn~ N(0,0.04)
1072
10-°
=
w2
=
[a =
107 — EukF
— MLEKF
B
cs™12
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Runtime [s]

Runtime [s]

Runtime [s]

Figure: From left to right: N = 100,200 and 400.
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OU example

Consider less regular observable ¢(x) := 1{x > 0.1}. Outside the scope of
our theory since it does not hold that

10°

(By [l ) =@ )P )M

10°

107

|Mean|

10° b

10 b

lo(Wi(v)) — d(W (W)l S NP, Wp > 2.

Time t=1.0 Time t=10.0 Time t=100.0
T T T
= |By oG]l 11
4 By o)l ]|
-- 2
2 3 4‘! 5 2 ‘3 4 0 1 2 ‘3 4 5
43 l L
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OU example

Consider less regular observable ¢(x) := 1{x > 0.1}. Outside the scope of
our theory since it does not hold that

lo(w(v)) —
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Extension of MLEnKF and conclusion
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Extension of MLEnKF to infinite dimensional state spaces

m Work in progress with Alexey Chernov, Kody Law, Fabio Nobile and
Tempone.
m Infinite dimensional stochastic dynamics:
Upy1 = \U(Un)
where u, € LP(Q; H) with H = Span({v;}72,), and
U [P(QH) — LP(S,H).
m And finite dimensional observations

¥Yn = Hup + vn,

with linear H: H — R™
m Introduce nested hierarchy of Hilbert spaces

HoCH1C...CHoo =H,
where H; = Span({y;}l/.v:"l) and work with a hierarchy of solvers
W LP(Q; M) — LP(U He).
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Conclusion

m Extended EnKF to multilevel EnKF.

m Verified asymptotic efficiency gain for approximations of expectation
of observables. We hope to improve result further!

m Further extension of MLEnKF to infinite dimensional state space is

work in progress.
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