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Change of support: the decisional problem
Sampling cm3 and extracting m3: the selection is performed on large volumes (blocks)

Exploration:
samples cm3

→
Extraction:
blocks m3

Decision
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Processing
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Anamorphosis



Gaussian anamorphosis

The variable of interest is rarely Gaussian
A Gaussian transformation (anamorphosis) is introduced:

Z = ϕ(Y ), with Y standard normal
Z increases with Y
ϕ is a strictly increasing function of Y



Normal score transform

Distribution functions



Gaussian model : Hermite polynomials

Development of the Gaussian anamorphosis function
or of any other function of a Gaussian variable into Hermite
polynomials.
The Hermite orthogonal polynomials go with the normal distribution.

Knowing the Gaussian density function g(y) = 1√
2π

exp(− y2
2 )

Hk(y) =
1√
k!

kth derivative of Gaussian density
Gaussian density

=
1√
k!

g (k)(y)
g(y) with k = 0, 1, . . .

which yields:

H0(y) = 1 H1(y) = −y H2(y) =
y2 − 1√

2
H3(y) =

−y3 + 3y√
6
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Development of a fonction into Hermite polynomials

Any (square integrable) function f (Y ) can be developed into Hermite
polynomials:

f (Y ) =
∑
k≥0

fk Hk(Y )

knowing the coefficients fk are given by

E [f (Y )Hl(Y )] =
∑
k≥0

fk E [Hk(Y )Hl(Y )] = fl

In particular:
f0 = E [f (Y )]

var(f (Y )) =
∑

k≥1(fk)2



Spatial bivariate Gaussian model

For (Y (x),Y (x+h)) bivariate normal with correlation function ρ(h)
we have

for k > 0 : cov(Hk(Y (x)),Hk(Y (x+h)) ) = (ρ(h))k

for k 6= l : cov(Hl(Y (x)),Hk(Y (x+h)) ) = 0

Hk(Y (x)) is more weakly auto-correlated with increasing k
There is neither cross nor direct spatial correlation
between two polynomials of different degree.



Discrete Gaussian
change-of-support model (DGM)



Discretized Gaussian
change-of-support model (DGM)
Matheron (1976)

x is a point at a random position within the block v .
By Cartier’s relation:

E [Z (x) | Z (v)] = Z (v)

A Gaussian anamorphosis is computed from the station data:

Z (x) = ϕ(Y (x)) =
∞∑

k=0
ϕk Hk(Y (x))

where Hk are Hermite polynomials. Applying Cartier:

E [Z(x) | Z(v)] = E [ϕ(Y (x)) | ϕ(Y (v))] = ϕv (Y (v)) =
∞∑

k=0
ϕk rk Hk(Y (v))

where r is the point-block coefficient, 0 < r ≤ 1.
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The change-of-support coefficient r

The block variance of Z (v) is computed from the point variogram γ(h)
(or the covariance function C(h)):

var(Z (v)) =
1
|v |2

ˆ
v

ˆ
v

C(x−x′) dxdx′

The block variance can be expressed in terms of the block anamorphosis:

var(Z (v)) = var(ϕv (Y (v))) =
∞∑

k=1
ϕk r2k

The point-block coefficient r is obtained by inverting this relation.



Change of support:
geostatistical simulation



Change-of-support by upscaling point simulation

On a regular grid upscaled values can be obtained without an
explicit change-of-support model:

1 point values are generated by geostatistical simulation
on a fine-scale grid;

2 upscaled values are obtained by averaging the point values
on the block support.

For unstructured grids as used in reservoir models
of the petroleum industry:

the creation and storage of a fine-scale regular grid may be too
time-demanding (very different cell volumes);
artifacts may appear if the chosen refinement was not sufficient.

For geostatistical simulation on unstructured grids
an explicit change-of-support model is recommended.



Unstructured grid: very different cell volumes

The white points indicate oil well locations.



Unconditional simulation example
Zaytsev et al. (2015)

(a) Upscaled point unconditional simulation.
(b) Simulation with DGM.



A variant of
the Discrete Gaussian Model



Discrete Gaussian models DGM1 and DGM2

In the original (DGM1) model proposed by Matheron (1976) the
point-block coefficient r is computed from the relation:

∞∑
k=1

ϕk r2k =
1
|v |2

ˆ
v

ˆ
v

C(x−x′) dxdx′

where the right-hand side represents the variance of Z (x).

Emery (2007) proposes a variant (DGM2) in which the point-block
coefficient r is computable directly from the variance of Y (x):

r =
1
|v |2

ˆ
v

ˆ
v
ρ(x−x′) dxdx′

which seems attractive in applications.

DGM2 is based on the assumption that the bivariate distribution of a
pair (Y (x),Y (x′)) with x, x′ ∈ v is bi-Gaussian, while Matheron (1976)
showed that the distribution of the pair actually is bi-Hermitian.
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Statistical analysis of simulation results

Statistics were computed based on 50 000 unconditional simulations.

Graphical comparison of densities for largest block in grid.
For small blocks the densities are undistinguishable.



DGM1 vs DGM2

Graphical representation of the mismatch between
practical and theoretical block variance depending on block size.

The mismatch for DGM1 (blue) values is unbiased.
For DGM2 (green) they reveal a bias.
But: the relative value of bias does not exceed 5% of the variance of Z(x).

If the range of the covariance function is large
as compared to block size (a frequent situation in practice),
the bias is negligible.



Simulation of porosity
on an offshore field

(Zaytsev et al. 2015)



Simulation of porosity
Tartan meshed offshore gas field model

=⇒

Depositional
space�� ��Original model

�� ��GeoChron model



Change of support: porosity

�



�
	Averaging point simulation

on original grid
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�
	Using DGM

on GeoChron grid



Conclusion

Explicit geostatistical change-of-support models are useful to
anticipate the deformation of statistical parameters as a function of
support in the presence of auto-correlation.
The discrete Gaussian model can be applied to data with different,
non-point supports (Brown et al. 2008).
Non-Gaussian (isofactorial) models are available.
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