An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation

A. Shah^{1,2}, M. E. Gharamti¹, L. Bertino¹

¹Nansen Environmental and Remote Sensing Center

²University of Bergen

11th International EnKF Workshop

June 20, 2016

Outline

- Motivation
- Range Limited Observations (RLO):
 - Methodology and Algorithm
- Numerical Experiments
- Conclusion

Motivation

- Many available measurement in environmental systems are defined within certain interval.
- To use the qualitative information available from the range limited observations.
- Very few studies carried out dealing this issue Borup et. al., (2015)

Range limited Observations

Methodology and Algorithm

Bayesian Rule

$$p(x | y) = \frac{p(x)p(y|x)}{p(y)}$$

- Borup et. al., (2015):
 - Ensemble Partial Updating (EnPU) for RLO
 - ➤ EnPU will allow us to use qualitative information about data i.e., the posterior will be

$$p(\mathbf{x}_k \mid \mathbf{y}_{quant}, \mathbf{y}_{qual})$$

where $\mathbf{y}_{\text{quant}}$ and \mathbf{y}_{qual} are quantitative and qualitative observation respectively

Figure: (Borup et. al., 2015) With and without partial updating when the measurement gauge has lower observation limit

Partial Ensemble Kalman Filter (PEnKF)

OR-observation

- > Create virtual observation at threshold limit
- ➤ Data likelihood for perturbing observations
- Two Piece Gaussian distribution (Fechner's Kollektivmasslehre, 1897)
- ➤ One of the observation variance in 2-piece Gaussian

$$S_{or} = p * (H\overline{x}^f)$$

where p is positive real number

Cont...

Posterior when the prior is in-range

$$p(\mathbf{x}_{k} | \mathbf{y}_{quant}, \mathbf{y}_{qualit}) \propto \begin{cases} p(\mathbf{x}_{k})p(\mathbf{y}_{quant} | \mathbf{x}_{k}) \\ p(\mathbf{x}_{k})p(\mathbf{y}_{qualit} | \mathbf{x}_{k}) \end{cases}$$

Numerical Experiments

- EnKF, PEnKF and EnKF-ignored DA methods are tested under the framework of twin experiment.
- Model Lorenz '96 with configuration as below
 - ➤ Number of Ensemble 100
 - > dt 0.05 (~6 hours)
 - Total time of integration is 5 Years
 - ➤ Model error introduced by using wrong forcing 7.5
 - > $S_{obs} = 1$

Cont...

- Experiments for Sensitivity to
 - Number of observation
 - ➤ Observation frequency
 - >Threshold limit
 - ➤ Model error
- Diagnostics tools:
 - ➤ Root Mean Square Error
 - ➤ Average Ensemble Spread
 - ➤ Observation Influence
 - ➤ Rank Histograms

RMSE and Avg. Ensemble Spread

75% of observations are out of range on an average for total time of integration2

Observation Influence

Rank Histogram (Reliability)

Sensitivity-Model Error

Conclusion and future work

- Adding qualitative information with PEnKF
 - Improve quality of forecast
 - Reduce uncertainty
 - Improves reliability of forecast
- Adding strong model error deteriorates the performance of the proposed DA scheme
- Implementation with some real world model and data set
- To investigate further for some possible improvement if possible

