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Smoothing

Reanalysis

Iterative filtering
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Visualization

EnRTS EnKS



Algorithms

EnRTS
With J̄t = At|tA+

t+1|t,

Et|T = Et|t + J̄t
[
Et+1|T −Et+1|t

]
,

for decreasing t.

EnKS
With X5 from Evensen’2003

EKS
t|T = EKS

t|T−1X
5
T .

for increasing T .
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Proof

Lemma: The EnRTS on-line
Unconditionally,

Et|T = Et|t +
T∑

k=t+1

(
k−1∏
τ=t

J̄τ

)[
Ek|k −Ek|k−1

]

Lemma: J̄τ recursively
Providing N ≤ m (or linear dynamics),

T−1∏
τ=t

J̄τ = At|T−1A+
T |T−1 .

Theorem: Equivalence

Et|T = EKS
t|T .
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Lorenz-96 system

Integrated with RK4: dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F
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In practice
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Summary

Both smoothers can be formulated on- and off- line

If N < m: equivalence

Equivalence broken by ad-hoc tuning

But capability remains equal
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Paper

Patrick Nima Raanes.
On the ensemble Rauch-Tung-Striebel smoother and its equivalence to
the ensemble Kalman smoother.
Quarterly Journal of the Royal Meteorological Society, 2015.

The Rauch-Tung-Striebel (RTS) smoother is a linear-Gaussian smoothing algorithm
that is popular in the engineering community. This note is a study of its ensemble
formulation (EnRTS). An on-line expression is derived and discussed. In particular, it
is used to show that the EnRTS is equivalent to the ensemble Kalman smoother
(EnKS), even in the nonlinear, non-Gaussian case. The theory is revisited under
practical considerations and equability is illustrated by numerical experiments, even
though equivalence is broken by inflation and localisation.



The EnKF-N and inflation
(poster teaser)

Patrick Nima Raanes
Marc Bocquet

11th EnKF workshop, Ulvik, June 19, 2016
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Summary

Less dogmatic assumptions =⇒ EnKF-N
Posterior variance depends on innovation

Better than “unbiased”
Sequential feedback

Careful about parameterization
and implicit assumptions

Dual perspective: scale mixture
Adaptive inflation
Good performance, no additional cost
Future: estimate model error inflation

Primal perspective: Student t prior
More general
Future: include localization
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Paper

Marc Bocquet, Patrick N. Raanes, and Alexis Hannart.
Expanding the validity of the ensemble Kalman filter without the intrinsic
need for inflation.
Nonlinear Processes in Geophysics, 22(6):645-662, 2015.
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Prior: p(λ2|E) = χ−2(λ2|N−1)
Likelihood: p(y,w?|E, λ2) = exp

(
−1

2‖δ̄‖
2
YYT/ζ+R

)
Posterior: p(w?, ζ|E,y) = exp

(
−1

2 D(ζ)
)



Gaussian distribution

N (x|0, 1) ∝ e−
1
2x

2

(Student) t distribution

t 1(x|1; 0, 1) ∝ 1
1 + x2
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Gaussian: N (x |0, 1)

t dist.: t1(x |4; 0, 1)
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