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What is history matching about ?

History matching aims to find proper values of petro-

physical parameters to explain observed data  

Who did this?

Effect – observed data

Cause – Petro-physical 
parameters (PERM,PORO)

Detectives – history 
matching algorithms



Background
Slide 5

Data in history matching

Production data

Seismic data

Electromagnetic (EM) data

Others

Well logs
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Seismic data

• Saturation and 

pressure maps

Seismic data at different “levels”

• Amplitude versus angle 

(AVA); 

• or raw seismic data
• Impedances (𝐼𝑝, 𝐼𝑠); 

• or velocities (𝑣𝑝, 𝑣𝑠) and 

density



AVA data  
(Raw seismic)

Impedance 
(𝑣𝑝, 𝑣𝑠, 𝜌) 

Saturation 
Pressure

Petrophysical
parameters
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Relation between reservoir petro-physical parameters and seismic data at different levels
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AVA data  
(Raw seismic)
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Our focus in this talk is to 

history match AVA data 
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Challenge in history-matching seismic data

Conventional history 

matching

Seismic history 

matching

• Small to moderate data

• Data size < model size

• Moderate demand of computing power and memory

• Big data

• Data size ≥ model size

• High demand of computing power and memory, 
if without an efficient method

• Extra computational issues
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Workflow



Proposed framework
Slide 12

Motivation

Use wavelet-based sparse 
representation to address the 
big data problem in seismic 
history matching.
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Wavelet-based sparse representation

Starck, Jean-Luc, Fionn Murtagh, and Jalal Fadili. Sparse Image and Signal Processing: 
Wavelets and Related Geometric Multiscale Analysis. Cambridge University Press, 2015



Noisy AVA data (noise lv = 30%)

Reference AVA data

• Leading coefficients used 
in history matching

• Number of leading 
coefficients is about 
6% of the original  
seismic data 

• True noise STD = 0.0148;    
estimated noise STD = 
0.0141
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Illustration: 2D data

Wavelet transform

Wavelet coefficients

Thresholding

Leading coefficients

Inverse transform
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Numerical example I: A 2D Norne field model 
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3D Norne field model PERMX filed of the 2D model 

(The 2D model is kindly provided by Dr. Mohsen 
Dadashpour)
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Experimental settings
Model size 39x1x26, with 739 out of 1014 being active 

gridcells

Parameters to estimate PORO, PERMX. Total number is 2x739 = 1478

Production data (~10 yrs) BHP, GOR, OPT, WCT. Total number is 135 

4D seismic data (1 Base + 2 
monitor surveys)

AVA intercept and gradient. Total number is 
46686

Leading wavelet coefficients Total number is 2746

History matching algorithm Iterative ensemble smoother*

*Luo, X., et al. (2015). "Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost 

problem: theory and applications." SPE Journal, 20, 962 - 982, paper SPE-176023-PA.
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Results when both production and seismic data are used (more results in SPE-180025-MS*)

Production and seismic data mismatch

Results of history-matching original seismic 
data without wavelet-base sparse 
representation

Production and seismic data mismatch

Results of history-matching leading wavelet 
coefficients

production data mismatch

production data mismatch

seismic data mismatch

seismic data mismatch

*Luo, X., et al. (2016). An Ensemble 4D Seismic History Matching Framework with Sparse Representation Based on Wavelet Multiresolution 
Analysis. SPE Bergen One Day Seminar, Bergen, Norway, 20 April, 2016. Paper SPE-180025-MS.
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Results when both production and seismic data are used (more results in SPE-180025-MS*)

RMSE of PERMX (left) and PORO (right)

Results of history-matching original seismic 
data without wavelet-base sparse 
representation

RMSE of PERMX (left) and PORO (right)

Results of history-matching leading wavelet 
coefficients

*Luo, X., et al. (2016). An Ensemble 4D Seismic History Matching Framework with Sparse Representation Based on Wavelet Multiresolution 
Analysis. SPE Bergen One Day Seminar, Bergen, Norway, 20 April, 2016. Paper SPE-180025-MS.
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Reference log PERMX Mean log PERMX of initial guess Mean log PERMX after history matching 

Results when both production and seismic data are used (more results in SPE-180025-MS*)

*Luo, X., et al. (2016). An Ensemble 4D Seismic History Matching Framework with Sparse Representation Based on Wavelet Multiresolution 

Analysis. SPE Bergen One Day Seminar, Bergen, Norway, 20 April, 2016. Paper SPE-180025-MS.
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Through sparse representation, 
better history matching results 
are obtained in comparison to 
the case of using the original 
AVA attribute data

Our finding in this particular case 
(for more information see SPE-180025-MS)
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Grid geometry of Brugge field

Experimental settings
Model size 139x48x9, with 44550 out of 60048 being active 

gridcells

Parameters to estimate PORO, PERMX, PERMY, PERMZ. Total number is 
4x44550 = 178,200

Production data (~10 yrs) BHP, OPR, WCT. Total number is 1400 

4D seismic data (1 Base + 2 
monitor surveys)

Near and far-offset AVA data. Total number is ~ 7 
x 106 (needing too much computer memory to 

be used directly) 

Leading wavelet coefficients Two cases: 
1. Total number is 178,332 (~2.5%);  100K case
2. Total number is 1665 (~0.02%). 1K case

History matching algorithm Iterative ensemble smoother*

*Luo, X., et al. (2015). "Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost 

problem: theory and applications." SPE Journal, 20, 962 - 982, paper SPE-176023-PA.
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Results when both production and seismic data are used (more results to be presented in ECMOR*)

*Luo, X., et al. (2016). An Ensemble 4D Seismic History Matching Framework with Sparse Representation and Noise Estimation: A 3D Benchmark

Case Study. 15th European Conference on the Mathematics of Oil Recovery (ECMOR), Amsterdam, Netherlands, 29 August - 01 September, 2016.

Production and seismic data mismatch in 
100K case

Seismic data mismatchProduction data mismatch

Production and seismic data mismatch in 
1K case
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Results when both production and seismic data are used (more results to be presented in ECMOR*)

*Luo, X., et al. (2016). An Ensemble 4D Seismic History Matching Framework with Sparse Representation and Noise Estimation: A 3D Benchmark

Case Study. 15th European Conference on the Mathematics of Oil Recovery (ECMOR), Amsterdam, Netherlands, 29 August - 01 September, 2016.

RMSE of PERMX (left) and PORO (right) in 
100K case

RMSE  of PORORMSE  of PERMX

RMSE of PERMX (left) and PORO (right) in 
1K case
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Reference log PERMX (at layer 2) Mean log PERMX (at layer 2) of initial guess

Mean log PERMX (at layer 2) after history matching (100K) 

*Luo, X., et al. (2016). An Ensemble 4D Seismic History Matching Framework with Sparse Representation and Noise Estimation: A 3D Benchmark

Case Study. 15th European Conference on the Mathematics of Oil Recovery (ECMOR), Amsterdam, Netherlands, 29 August - 01 September, 2016.

Results when both production and seismic data are used (more results to be presented in ECMOR*)

Mean log PERMX (at layer 2) after history matching (1K) 
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Reference PORO (at layer 2) Mean PORO (at layer 2) of initial guess

Mean PORO (at layer 2) after history matching (100K) 

*Luo, X., et al. (2016). An Ensemble 4D Seismic History Matching Framework with Sparse Representation and Noise Estimation: A 3D Benchmark

Case Study. 15th European Conference on the Mathematics of Oil Recovery (ECMOR), Amsterdam, Netherlands, 29 August - 01 September, 2016.

Results when both production and seismic data are used (more results to be presented in ECMOR*)

Mean PORO (at layer 2) after history matching (1K) 
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Efficient reduction of data size

Intrinsic noise estimation in the data

Applicability to various types of data (AVA,

impedance, saturation map etc.)

Advantages in using wavelet-base sparse representation 
In seismic history matching 
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Field case studies

Various types of seismic data 

Covariance localization/local analysis

Possible future investigations
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