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Abstract

When ensemble-based methods are applied to a facies reservoir
field in a truncated plurigaussian framework, the problem prior to
data assimilation is to exactly reproduce a given faices field by
means of a pair of Gaussian random field realizations and map-
ping based on a truncation map.

Intermediate problem includes the model parameter estimation:
Gaussian random fields probability distribution and the truncation
map.

Evaluation of the pairwise facies likelihood is the key to the entire
parameter estimation method.

1. Problem

Abbreviation

GRF: Gaussian random field

TPG model: truncated plurigaussian model

TM: truncation map

Fig. 1: Facies field

Problem is set to exactly reproduce a facies field F (x), x ∈ X,
Fig. 1 by means of a TPG model.

First sub-problem is to estimate the probability distribution of a
pair of stationary GRFs Y1(x), Y2(x), and the TM, which maps a
pair of GRFs into one facies random field.

The GRF distribution is specified by covariance function
Ci(h) = Cov(Yi(x + h), Yi(x)), i = 1, 2,
or variogram functions γi(h) (see Fig. 2 for relation).

Fig. 2: Relation between covariance and variogram
(http://www.minetechint.com/papers/droy-thesis/)

The TM can have different complexity depending on parametriza-
tion (e.g., Fig. 3).

Fig. 3: TM examples with same proportion set

More complex parametrization can be subject to an estimation
and may result in a better data fit.

Second sub-problem is the conditional TPG simulation of Gaus-
sian variables by means of the Gibbs sampler, given observations
of facies in every grid.

2. Existing method

The existing method by N. Desassis & D. Renards (in print) allows
to reproduce the exact field given a TM. The TM choice prior to
any GRF parameter estimation is rather simple: based on propor-
tions and contact presence/absence (Armstrong et al., 2011).
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*For each given vector h, estimate C1(h), C2(h) that maximize the
data pairwise likelihood

S(C1(h), C2(h)) =
∏

∀xi,xj∈X|xj−xi≈h
P

([(
Y1(x), Y2(x)

)
∈ I(xi)

]
∩
[(
Y1(x + h), Y2(x + h)

)
∈ I(xj)

])
,

where I(xi) is the area on the TM associated to the facies ob-
served at xi.

**Based on Desassis and Renard (2013).

3. New workflow

An initial assumption might include a TM estimate (input A),
or an initial assumption might give the GRF distribution (input B).

Both sets of parameters (TM and GRF variograms) can be reesti-
mated conditional to each others based on the maximum pairwise
likelihood.

The TM estimation uses a product of pairwise likelihood functions
for different h.
Only terms corresponding to shorter correlations are multiplied to
achieve reasonable computational time.
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reproduce C(x) by
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It is better to finish the estimation loop with GRF variogram esti-
mation which is much faster computationally.

One cycle is usually sufficient to provide a useful estimate of a
TM and the GRF variograms whether we start with input A or B.

4. Results

Increase in the likelihood function is reflected in an improve-
ment in indicator variograms fit. We plot the empirical indicator
auto-variograms and cross-variograms, Fig.4 and their theoreti-
cal equivalents from the estimated TPG models. We show the
horizontal direction where the improvement was more significant.

Fig. 4: Auto-variograms and
cross-variograms. Horizontal direction

Entire problem solution is a pair of GRF realizations conditional to
the facies field throughout the TM mapping.

The model fits the data well if the conditional GRF realizations
‘look like’ unconditional GRF realizations.

In Figure 5 one pair of realizations is a result of unconditional
simulation and another pair is conditional to the facies field from
Fig. 1 given the TM from Fig. 3 (second example).
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Fig. 5: Which pair of realizations is conditional simulation? Which
one is unconditonal simulation?
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