PSO Algorithm for Optimum Well Placement subject to Realistic Field Development Constraints

Mansoureh Jesmani, NTNU, Mathias C. Bellout, NTNU, Remus Hanea, Statoil, and Bjarne Foss, NTNU

June 10, 2015

Well Placement Problem

Common formulation of well placement problem:

$$\begin{aligned} \max_{\boldsymbol{\zeta},\mathbf{u}^n} [J &= \sum_{n=0}^{N-1} L^n(\mathbf{x}^{n+1},\boldsymbol{\zeta},\mathbf{u}^n)], \\ \text{subject to:} \\ \boldsymbol{\zeta}^d &\leq \boldsymbol{\zeta} \leq \boldsymbol{\zeta}^u, \\ \mathbf{u}^d &\leq \mathbf{u}^n \leq \mathbf{u}^u, \\ \mathbf{x}^0 &= \mathbf{x}_0, \\ g^n(\mathbf{x}^{n+1},\mathbf{x}^n,\boldsymbol{\zeta},\mathbf{u}^n) &= 0, \, n = 0, 1, \cdots, N-1. \end{aligned}$$

Well Placement Problem

Common formulation of well placement problem:

$$\begin{aligned} \max_{\boldsymbol{\zeta},\mathbf{u}^n} [J &= \sum_{n=0}^{N-1} L^n(\mathbf{x}^{n+1},\boldsymbol{\zeta},\mathbf{u}^n)], \\ \text{subject to:} \\ \boxed{\boldsymbol{\zeta}^d \leq \boldsymbol{\zeta} \leq \boldsymbol{\zeta}^u,} \\ \mathbf{u}^d \leq \mathbf{u}^n \leq \mathbf{u}^u, \\ \mathbf{x}^0 &= \mathbf{x}_0, \\ g^n(\mathbf{x}^{n+1},\mathbf{x}^n,\boldsymbol{\zeta},\mathbf{u}^n) &= 0, \ n = 0, 1, \cdots, N-1. \end{aligned}$$

Motivation

- Problem: Engineering experiences are not included.
- Valuable solution depends on
 - Identification of limitations,
 - Translation of them into constraints.
- The success of the optimization effort relies on
 - Efficient search algorithm,
 - Constraint-handling techniques.

- Well distance $C_{wd}: R_{i,j}^* \geq d_{min}$
- Well length $C_{wl}: L_i = \|\boldsymbol{\zeta}_i^h \boldsymbol{\zeta}_i^t\|_2, \ l_{min}^i \leq L_i \leq l_{max}^i$
- Reservoir bound $C_{rb}: \boldsymbol{\zeta}_i^h \in R_i^h, \quad \boldsymbol{\zeta}_i^t \in R_i^t$
- $\begin{array}{l} \bullet \text{ Well orientation} \\ C_{wo}: \theta_{i,j} = \arccos \left| \frac{(\zeta_i^h \zeta_i^t) \cdot (\zeta_j^h \zeta_j^t)}{\|\zeta_i^h \zeta_i^t\|_2 \|\zeta_j^h \zeta_j^t\|_2} \right| \leq \theta_{max} \end{array}$

- Well distance $C_{wd}: R_{i,j}^* \geq d_{min}$
- Well length $C_{wl}: L_i = \|\boldsymbol{\zeta}_i^h \boldsymbol{\zeta}_i^t\|_2, \ l_{min}^i \leq L_i \leq l_{max}^i$
- Reservoir bound $C_{rb}: oldsymbol{\zeta}_i^h \in R_i^h, \quad oldsymbol{\zeta}_i^t \in R_i^t$
- $\begin{array}{c} \bullet \text{ Well orientation} \\ C_{wo}: \theta_{i,j} = \arccos \left| \frac{(\zeta_i^h \zeta_i^t) \cdot (\zeta_j^h \zeta_j^t)}{\|\zeta_i^h \zeta_i^t\|_2 \|\zeta_j^h \zeta_j^t\|_2} \right| \leq \theta_{max} \end{array}$

- Well distance $C_{wd}: R_{i,j}^* \geq d_{min}$
- Well length $C_{wl}: L_i = \|\boldsymbol{\zeta}_i^h \boldsymbol{\zeta}_i^t\|_2, \ l_{min}^i \leq L_i \leq l_{max}^i$
- Reservoir bound $C_{rb}: \boldsymbol{\zeta}_i^h \in R_i^h, \quad \boldsymbol{\zeta}_i^t \in R_i^t$
- Well orientation $C_{wo}: \theta_{i,j} = \arccos\left|\frac{(\zeta_i^h \zeta_i^t) \cdot (\zeta_j^h \zeta_j^t)}{\|\zeta_i^h \zeta_i^t\|_2 \|\zeta_j^h \zeta_j^t\|_2}\right| \leq \theta_{max}$

- Well distance $C_{wd}: R_{i,j}^* \geq d_{min}$
- Well length $C_{wl}: L_i = \|\boldsymbol{\zeta}_i^h \boldsymbol{\zeta}_i^t\|_2, \ l_{min}^i \leq L_i \leq l_{max}^i$
- Reservoir bound $C_{rb}: \boldsymbol{\zeta}_i^h \in R_i^h, \quad \boldsymbol{\zeta}_i^t \in R_i^t$
- Well orientation $C_{wo}: \theta_{i,j} = \arccos \left| \frac{(\zeta_i^h \zeta_i^t) \cdot (\zeta_j^h \zeta_j^t)}{\|\zeta_i^h \zeta_i^t\|_2 \|\zeta_i^h \zeta_i^t\|_2 \|\zeta_i^h \zeta_i^t\|_2} \right| \le \theta_{max}$

General Form of Well Placement Problem

```
\begin{split} & \min - \mathsf{NPV}, \\ & \mathsf{subject\ to:} \\ & C_i(\boldsymbol{\zeta}) \geq 0, \quad i \in \{wd, wl, rb, wo\}, \\ & \mathbf{u}^d \leq \mathbf{u}^n \leq \mathbf{u}^u, \\ & \mathbf{x}^0 = \mathbf{x}_0, \\ & g^n(\mathbf{x}^{n+1}, \mathbf{x}^n, \boldsymbol{\zeta}, \mathbf{u}^n) = 0, \, n = 0, 1, \cdots, N-1. \end{split}
```

 PSO provides comparable or better results than binary GA (Onwunalu and Durlofsky, 2010).

Particle Swarm Optimization (PSO)

$$\nu_{i}(k+1) = \nu_{i}(k) + c_{1}\rho_{1}(k)(\mathbf{p}_{l,i}(k) - \mathbf{x}_{i}(k)) + c_{2}\rho_{2}(k)(\mathbf{p}_{g,i}(k) - \mathbf{x}_{i}(k)),$$

$$\mathbf{x}_{i}(k+1) = \mathbf{x}_{i}(k) + \nu_{i}(k+1).$$

Inertia Weight

$$\hat{\boldsymbol{\nu}}_{i}(k+1) = \boldsymbol{w}(k)\boldsymbol{\nu}_{i}(k) + c_{1}\rho_{1}(k)(\mathbf{p}_{l,i}(k) - \mathbf{x}_{i}(k)),$$

$$+ c_{2}\rho_{2}(k)(\mathbf{p}_{g,i}(k) - \mathbf{x}_{i}(k)),$$

$$\boldsymbol{\nu}_{i}^{j}(k+1) = \operatorname{sign}(\hat{\boldsymbol{\nu}}_{i}^{j}(k+1)) \min\{|\hat{\boldsymbol{\nu}}_{i}^{j}(k+1)|, \boldsymbol{\nu}_{max}^{j}\},$$

$$\mathbf{x}_{i}(k+1) = \mathbf{x}_{i}(k) + \boldsymbol{\nu}_{i}(k+1),$$

$$\boldsymbol{\nu}_{max}^{j} = \lambda(\boldsymbol{u}^{j} - \boldsymbol{l}^{j}), \quad \boldsymbol{w}(k) = \boldsymbol{w}_{0} - \frac{k}{K}(\boldsymbol{w}_{0} - \boldsymbol{w}_{1}).$$

$$\text{speed factor due to the best global}$$

$$\text{final speed}$$

$$\text{weighted influences}$$

$$\text{speed factor due to the best global}$$

Method 1: Penalty function

Merit function

$$\phi_1(\zeta, \mu) = -(\text{NPV})_{sc} + \mu \sum_i \max\{0, -(C_i)_{sc}\},$$

• Penalty parameter (μ) grows with iteration number.

Method 2: Decoder

 A homomorphous mapping between an n-dimensional cube and a feasible search space (Koziel and Michalewicz, 1999).

- Constraints: Both toe and heel should stay in the circle (feasible region),
- Variables: Cartesian coordinate for both heel (x_h, y_h) and toe (x_t, y_t)

Introducing Decoder for Placing one Horizontal Well

- Step 1: Define reference $r_0 =$ $\begin{bmatrix} 35 & 35 & -35 & -35 \end{bmatrix}$
- Step 2: The input of decoder should stay in the cube $[-1, 1]^4$

$$y = \begin{bmatrix} 0.4 & 0.6 & -0.3 & 0.5 \end{bmatrix}$$

Introducing Decoder for Placing one Horizontal Well

• Step 3: Calculate

$$y/y_{max} = \frac{1}{0.6} \begin{bmatrix} 0.4 & 0.6 & -0.3 & 0.5 \end{bmatrix}$$

• Step 4: Map g(y) to s $s = g(y/y_{max}) = [66.7 \ 100 \ -50 \ 83.3]$ $g(y) = (y - \frac{(u-l)}{2}) + \frac{u+l}{2}$

Introducing Decoder for Placing one Horizontal Well

 Step 5: Define line segment between s and r₀:

$$L(r_0, s) = r_0 + t(s - r_0)$$

• Step 6: Find t_0 where L intersects the boundary of circle: $t_0 = 0.72$

Introducing Decoder for Placing one Horizontal Well

 Step 5: Define line segment between s and r₀:

$$L(r_0, s) = r_0 + t(s - r_0)$$

• Step 6: Find t_0 where L intersects the boundary of circle: $t_0 = 0.72$

Introducing Decoder for Placing one Horizontal Well

• Step 7: Calculate $\phi(y)$: $\phi(y) = r_0 + y_{max}t_0(s - r_0)$

Introducing Decoder for Placing one Horizontal Well

- \bullet g(y)
- \bullet $g(y/y_{max})$
- $\bullet r_0 + y_{max}t_0(s-r_0)$

- Non-convex feasible set if:
 - Non-convex feasible region,
 - Include other constraints.
- In the case of non-convex feasible set:
 - All steps are same,
 - Several feasible interval:

$$[t_1, t_2], \cdots [t_{2k-1}, t_{2k}]$$

Define new map:

$$\gamma: (0,1] \to \cup_{i=1}^k (t_{2i-1}, t_{2i}]$$

Non-Convex Feasible Space

$$\gamma:(0,1]\to \cup_{i=1}^k(t_{2i-1},t_{2i}]$$

General Form of Decoder

$$\phi(\mathbf{y}) = \begin{cases} \mathbf{r}_o + t_o \cdot (g(\mathbf{y}/y_{max} - \mathbf{r}_o)) & \text{if } \mathbf{y} \neq \mathbf{0} \\ \mathbf{r}_o & \text{if } \mathbf{y} = \mathbf{0} \end{cases}$$
$$y_{max} = \max_{i=1}^n |y_i|,$$
$$t_0 = \gamma(|y_{max}|).$$

Decoder

- There is no need for any additional parameters,
- Always return a feasible solution,
- The map has locality feature, if any line segment, originates from the reference point, intersect the feasible search space just at one point.

Case Study I

Algorithm	Best	Mean	Relative standard
	$(\times 10^8)$	$(\times 10^8)$	deviation $(\%)$
Decoder	5.28	5.19	2.8
Penalty(tune I)	5.26	5.17	2.7
Penalty(tune II)	5.24	4.86	6.8

Case Study II: Regions Setting for Decoder

- 5 producers and 3 injectors,
- one realization,
- fixed production settings,
- $40 \times 64 \times 14 = 35,840$ grid cells.

Case Study II: Regions Setting for Decoder

Initial search regions

Improved search regions

Case Study II: results

$$n_p = 49, \ n_g = 50$$

Conclusion and Future Work

Conclusion:

- Improve the decision-making support by introducing realistic well placement constraints,
- Couple decoder with the PSO algorithm,
- Compare to the penalty method, the decoder can be used efficiently.

• Future work:

- Applying this methodology to more complex cases,
- Geological uncertainty,
- Variable production strategy.

Thank You!

- Koziel, S., Michalewicz, Z., Mar. 1999. Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol. Comput. 7 (1), 19-44. URL http://dx.doi.org/10.1162/evco.1999.7.1.19
- Onwunalu, J., Durlofsky, L., 2010. Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput. Geosci. 14 (1), 183-198.