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Uncertainty in Model-based Prediction
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Increasing Availability of Sensor Based Online

a
Material characterization (geo-chemical, tex
Equipment pe’/r‘t;)rn}ané, upstream and dov
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Content

How can we make best use of the available data?

 Closing the Loop: A feed-back framework for Real-Time Resource Model
Updating
A Kalman Filter Approach
 Using Online Data for Improved Production Control

« Illustrative Case Study: Coal
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Towards Closed-Loop Management
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Towards Closed-Loop Management
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Prior Model (s)
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Resource Model

Generation of Prior Models

Interpolation Simulation Realisation 1&10
(Kriging) (Conditional Simulation)

. Best local estimation, . Represent possible scenarios about the deposit,

. Minimization of error-variance estimate. . Represent structural behavior of data (in-situ variability),

. Modelled by many different realizations,

. Differences between realizations capture uncertainty

"“.l?l . Realisation 1 ":@L
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(Benndorf 2013)
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Closed-Loop Concept
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Closed-Loop Concept
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« n mining blocks

 each of the blocks contributes
to a blend, which is observed at
a sensor station at time t,

« /m measurements are taken

* a;;proportion block /
contributes to the material
blend, observed at time j by

measurement /,

Linking Model and Observation
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Resource Model Updating

Sequential Model Updating - A Kalman Filter Approach

Z"(x) =Z"¢(x) + K (v — AZ"(x))

Z*(x) ... updated short-term block model (a posteriori)

Z"y(x) ... prior block model based (without online sensor data)

Y ... vector of observations (sensor signal at different points in time t)

A ... design matrix representing the contribution of each block per time
Interval to the production observed at sensor station

K ... updating factor (Kalman-Gain)
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Resource Model Updating

Sequential Model Updating — A “BLUE”

Estimation error:
e(X)t+1 = Z(X) 41 — Z°(X) 41

Estimation variance to be minimized:

Civ1641 = E[ e(x)t+1e(x)t+1T]

Updating factor:

K=C.A"(AC.. AT+ C, )
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Resource Model Updating

Sequential Model Updating — The Integrative Character
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Resource Model Updating

Sequential Model Updating

Main challenges:

« Large grids
Industrial Case: 4,441,608 blocks

Non-linear relationships between model and observation
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Resource Model Updating

Sequential Model Updating
A Non-Linear Version — The Ensemble Kalman Filter

n realizations n updated realizations
(Ensamble) (updated Ensamble)

& Model based prediction AZ,(x)

Observations [
o Difference (I — AZy(x))

Z'(x) =Zy (x) + K(1— AZy(x))

(Reproduced after Geir Evensen 1993)
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Resource Model Updating

Sequential Model Updating
To handle Non-Gaussian Data... N-Score-Ensemble Kalman Filter*

— State Vector Observation
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*Z Haiyan, J J Gomez-Hernandez,
H H Franssen, L Li. 2011. An
approach to handling non-
Gaussianity of parameters and
state variables. Advances in Water
Resources, 844-864.
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Illustrative Case Study

Updating the Calorific Value in a Large Coal Mine

Case Study: Walker Lake Data Set

(Exhaustive “true” data are available)
Model based prediction:

- Estimated block model (5200t/block)
« Capacity Excavator 1: 500 t/h

 Capacity Excavator 2: 1.000 t/h

3
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Illustrative Case Study

Updating the Calorific Value in a Large Coal Mine

Sensor Observations:

Artificial sensor data for a 10 minute average (representing 250 t)
Relative sensor error is varied between 1%, 5% and 10%
Sensor data obtained:

« Model based prediction + dispersion variance + sensor error
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Illustrative Case Study

Prior Estimated Block Model
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Illustrative Case Study

Comparison to Reality

Kalman-Filter: 2 Excavators

MSE-mined MSE- adjacent blocks MSE- 2 blocks away
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Illustrative Case Study - Results

- Significant improvement in prediction

 Increased confidence in dispatch decisions
 Less miss-classified blocks (ore/waste)
 Less shipped train loads out of spec

- Increased customer satisfaction and revenue

« Magnitude of improvement depends on level of exploration,
variability and sensor error
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Conclusions

« Modern ICT provides online data, which can be the basis for (near-)
continuous process monitoring at different stages of the mining value
chain

« Utilizing these data for (near-) real-time decision making offers huge
potential for more sustainable extraction of mineral resource

* Closed Loop Concepts offer:
« Integration of prediction and process models with data gathering

« Interdisciplinary and transparent project communication (breaking
the silos)

« More complex use of data for increased resource efficiency
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