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Introduction

A Starting Point.

Relationship to Gradient-Based Data Assimilation.

Localization.

Pseudo-Inverse and Subspace Methods.

ES-MDA, Field Case.

ES-MDA (Adaptive) with Illustration.

Non-Gaussian Geology.
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Starting Points

My failed beginning: Naevdal et al., SPE 75235 (2002), Evensen,
J. Geophysical Research Research (1994).

Evensen, The ensemble Kalman filter: theoretical formulation and
practical implementation Ocean Dynamics (2003), “The combined
parameter and state estimation problem,” (2005 manuscript).

Additional reading: G. Evensen, Data Assimilation: The Ensemble
Kalman Filter Springer, 2009. Two review papers: G. Evensen,
IEEE Control Systems Magazine (2009); Aanonsen et al., SPE
Journal 2009.
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The Dawn

EnKF is essentially equivalent to doing one Gauss-Newton
iteration with a full-step using an average sensitivity coefficient to
update each realization at each data assimilation time; SIAM
Geoscience Conference 2005 (Avignon) and Reynolds et al.
“Iterative Forms of the Ensemble Kalman Filter,” ECMOR X (2006).

Randomized maximum likelihood for parameter
estimation/simulation, Oliver et al. ECMOR (1996), provides an
approximate sampling of f (m|dobs)∝ exp(−O(m))

O(m) =
1

2
(m−mprior)

T C−1
M (m−mprior)

+
1

2
(d f (m)− dobs)

T C−1
D (d

f (m)− dobs)

mprior← muc, j ∼ N(mprior, CM ), dobs← duc, j ∼ N(dobs, CD),
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RML

Minimizing with Gauss-Newton gives

m`+1
c, j = α`muc, j+(1−α`)m`j+α`CM GT

`, j(CD+G`, jCM GT
`, j)
−1

× (duc, j − d f (m`j) + G`, j(m
`
j −muc, j)) for j = 1,2, · · ·Ne.

G`, j is the sensitivity matrix evaluated at m`j , the equation is
Gauss-Newton iteration for minimizing

Samples correctly in the linear (d f (m) = Gm) Gaussian case.
Note to obtain correct sampling in the linear-Gaussian case; it is
necessary to perturb the data, i.e., dobs is replaced by
duc, j ∼N (dobs, CD); Oliver, Mathematical Geology (1996);
Reynolds et al. AAPG Memoir 71 (1999); Burgers et al. Monthly
Weather Review (1998).
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RML

One iteration (`= 0); initial guess equal to unconditional
realization (m0

j = muc, j); full step (α0 = 1), all G`, j replaced by

Ḡ = G(m̄0)

m`+1
c, j = α`muc, j+(1−α`)m`j+α`CM GT

`, j(CD+G`, jCM GT
`, j)
−1

× (duc, j − d f (m`j) + G`, j(m
`
j −muc, j)) for j = 1, 2, · · ·Ne

m1
c, j = muc, j + CM ḠT (CD + ḠCM ḠT )−1(duc, j − d f (muc, j)).

or
ma

j = m f
j + CM ḠT (CD + ḠCM ḠT )−1(duc, j − d f

j ). (1)
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EnKF - One Data Assimilation Step, Reynolds et al.
ECMOR (2006); SIAM Geosciences (2005);

ma
j = m f

j +
1

Ne − 1
∆M f (∆D f )T

�

CD+
1

Ne − 1
(∆D f )(∆D f )T

�−1
(duc, j−d f

j ).

m̄ f =
1

Ne

Ne
∑

j+1

m f
j d̄ f =

1

Ne

Ne
∑

j+1

d f
j

∆M = [· · ·m f
j − m̄ f · · · ] ∆D f = [· · · d f

j − d̄ f · · · ]

C̃ f
M D ≡

1

Ne − 1
∆M f (∆D f )T =

1

Ne − 1

Ne
∑

j=1

(m f
j − m̄ f )(d f

j − d̄ f )T

We prefer replacing d̄ f by d f (m̄ f ) although this second term is not
necessarily a good approximation of the first. Then

(d f
j −d̄ f )T = (d f

j −d f (m̄ f ))T = (G(m̄ f )(m f
j −m̄ f )+e)T ≈ (m f

j −m̄ f )T ḠT

Reynolds et al. Ensemble-based data assimilation 23 June 2015 (7/41)



Case Descriptions

EnKF - One Data Assimilation Step

ma
j = m f

j +
1

Ne − 1
∆M f (∆D f )T

�

CD+
1

Ne − 1
(∆D f )(∆D f )T

�−1
(duc, j−d f

j ).

C̃ f
M D ≡

1

Ne − 1
∆M f (∆D f )T =

1

Ne − 1

Ne
∑

j=1

(m f
j − m̄ f )(d f

j − d̄ f )T

1

Ne − 1

Ne
∑

j=1

(m f
j − m̄ f )(m f

j − m̄ f )T ḠT ≈ C̃ f
M ḠT

Similarly,

C f
DD ≡

1

Ne − 1
(∆D f )(∆D f )T = ḠC̃ f

M ḠT + ed

ma
j = m f

j + C̃ f
M ḠT

�

CD + ḠC̃ f
M ḠT

�−1
(duc, j − d f

j ).

the same results as we had for one iteration of Gauss-Newton ...
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Comments

Iterative ensemble smoother methods: ES-MDA (adaptive) or
Chen- Oliver, LevenbergâMarquardt-Iterative-ES, Computational
Geosciences (2013) (essentially utilizes a truncated SVD of
dimensionless sensitivity matrix).

Suggests that we can improve performance of EnKF (at least the
data match) by an iterative process that mimics Gauss-Newton
iteration. Some of the proposed iterative EnKF schemes are
compared for a simple reservoir problem in Emerick and Reynolds
Computational Geosciences, (2013).

Even with the prior regularization term, a full-step of
Gauss-Newton often leads to overshooting and undershooting,
i.e., extremely high or extremely low value of property fields so
additional regularization is sometimes required especially if noise
level is low.
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Peripheral Questions

How can updated (analyzed) simulation variables honor material
balance? How can updated (analyzed) reservoir variables
(parameters) be in any sense consistent with updated states
(primary variables predicted from forward model)? For
linear-Gaussian case, they are statistically consistent; Thulin et al.
SPE 109975 (2007) (Computations in this paper are incorrect.) In
highly nonlinear-case, inconsistency cannot be avoided unless we
rerun updated models from time zero after some data assimilation
step; this inconsistency issue can be avoided by using the
ensemble smoother where all data are simulated at once and only
reservoir parameters are estimated.

Spurious correlations result from sampling error due to small
ensemble size and must be dealt with by some form of covariance
or Kalman gain localization.
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Another Problem of Limited Ensemble Size

Each updated vector of model parameters is a linear combination
of the initial ensemble of models. Note for parameter vector,
m f ,n

j = ma,n−1
j .

mn,a
j = mn, f

j +
1

Ne − 1
∆M f ,n(∆D f ,n)T

�

Cn
D+

1

Ne − 1
∆D f ,n(∆D f ,n)T

�−1
(dn

uc, j−d f ,n j )

= mn−1,a
j +

1

Ne − 1
∆M a,n−1

h

(∆D f ,n)T
�

Cn
D+

1

Ne − 1
∆D f ,n(∆D f ,n)T

�−1
(dn

uc, j−d f ,n j )
i

= mn−1,a
j +∆M a,n−1 x j = mn−1,a

j +
Ne
∑

i=1

(x j)i(m
n−1,a
i −m̄n−1,a).

All analyzed reservoir models are in the subspace spanned by the
ensemble of initial realizations; choose your initial realizations
wisely; Oliver and Chen Computational Geosciences (2009);
Dovera and Della Rossa Computational Geosciences (2012).
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Limited Ensemble Size

All analyzed reservoir models are in the subspace spanned by the
ensemble of initial realizations. Assume Nm > Nd > Ne,
R(∆M f ,n)≤ Ne − 1, thus, we have only Ne − 1 degrees of
freedom available to adjust data. May not be able to match data
well. As we keep assimilating data, may diverge farther from true
state.

Lorenc Q. J. R. Meteorol. Soc. (2003) shows that a perfect
observation (zero noise) results in a loss of one degree of freedom
in the ensemble.
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Rescaling and Pseudo-Inverse

At each EnKF analysis step we must invert an Nn× Nn matrix C
given by

C = HC f
Y H T+ CD = C f

DD+ CD.

If CD is positive-definite C f
DD is a real-symmetric positive

semi-definite matrix, but may be poorly conditioned, hence
truncated SVD (TSVD) is usally used for inversion. This can lead
to loss of information when data measurement errors have
significantly different scales.
For example, the information leading to water-cut data can be lost
(problem with computations in Thulin et al. paper mentioned
earlier) so that water cut data cannot be matched; see Wang et al.
SPEJ, 2009.
CD = diag(σ2

d,i).
Rescale as

C = C1/2
D

h

C−1/2
D C f

DDC−T/2
D + INn

i

CT/2
D
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Rescaling and Pseudo-Inverse

C = C1/2
D

h

C−1/2
D C f

DDC−T/2
D + INn

i

CT/2
D

Truncated SVD is now applied to the matrix in square brackets
denoted by C̃ , i.e.,

eC = eUr eΛr eU
T

r ,

with the pseudo-inverse of C given by

C+ = C−T/2
D

eUr eΛ
−1
r
eU T

r C−1/2
D .

Truncate when
∑Nr

i=1λi
∑Nn

i=1λi

≤ ξ= 0.999.
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Comments on Scaling

eC = INn
+ C−1/2

D C f
DDC−T/2

D = INn
+ C−1/2

D ḠCM Ḡ TC−T/2
D

= INn
+ C−1/2

D ḠC1/2
M CT/2

M Ḡ TC−T/2
D

= INn
+ C−1/2

D ḠC1/2
M

�

C−1/2
D ḠC1/2

M

�T = INn
+ GDG T

D .

One model, one datum,

g =
σm

σd

∂ d

∂m
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Comments on Scaling

eC = INn
+ GDG T

D . For linear-Gaussian case, Tavakoli and
Reynolds

�

SPEJ (2009), Comp. Geo. (2011) showed that the
singular values of GD govern the reduction in uncertainty in the
model obtain by assimilating data. (Ideas of their methods go back
to Vogel and Wade, “Iterative SVD-based methods for ill-posed
problems,” SIAM J. Sci. Comput. (1994).

V ′

V
=

r

det CMAP

det CM
=

√

√

√

√

Nd
∏

i=1

1

1+λ2
i

,

where λi ’s are singular values of GD.
Applying TSVD to eC small λi corresponds to eliminating small
singular values of GD which have the smallest influence on the
reduction of uncertainty. In this sense, the rescaling procedure
presented in this section is optimal. Chen-Oliver LM-IES uses
TSVD of the ES analogue of GD.
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Subspace Inversion

Evensen, Ocean Dynamics (2004) introduced a subspace
inversion scheme which is more computationally more efficient
that the pseudo-inversion when Ne << Nn; Also see Skjervheim et
al SPEJ (2007). Useful for assimilation of large data sets, e.g.,
seismic data. With the Evensen subspace inversion, it may not be
necessary to rescale because CD is left intact. (A scaled version of
it is given in Emerick and Reynolds, Computational Geosciences
(2012) but it involves computing C1/2

D .

Subspace inversion uses the TSVD (UrWr(Vr)T ) of the Nd × Ne
matrix ∆D f :

C = C f
DD+CD =∆D f (∆D f )T+CD = (UrWr(Vr)

T )(UrWr(Vr)
T )T

+ CD ≈ UrWr

�

INr
+W−1

r U T
r CDUrW

−1
r

�

Wr U T
r

where when convenient, we have assumed Ur U T
r = I .

Reynolds et al. Ensemble-based data assimilation 23 June 2015 (17/41)



Case Descriptions

Subspace Inversion

C ≈ UrWr

�

INr
+W−1

r U T
r CDUrW

−1
r

�

Wr U T
r .

W−1
r U T

r CDUrW
−1
r = ZrΛr Z T

r

C = C f
DD+ CD = UrWr

�

INr
+ ZrΛr Z T

r

�

Wr U T
r

C+ = (C f
DD+ CD)

+ = UrW
−1
r Zr

�

INr
+Λr

�−1
Z T

r W−1
r U T

r

Reynolds et al. Ensemble-based data assimilation 23 June 2015 (18/41)



Case Descriptions

Ensemble Smoother (ES)

Similar to EnKF, but with a single update with all data available,
i.e., no sequential data assimilation.

d1 d2 d3
Time

U
pd
at
es

History Forecast

Parameter-estimation problem.

Faster and easier to implement than EnKF.

Problem: ES often yields a data match significantly inferior to that
obtained with EnKF.
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EnKF (and ES) as Gauss-Newton

Conjecture: Perhaps sequential assimilation is one of the reasons
why EnKF gives acceptable results when assimilating production
data that are fairly closely-spaced in time (sequential updates are
similar to multiple GN updates).

As noted previously, a single GN update, which may not be
enough for conditioning the realizations to the observations, and
can suffer from overcorrection.

ES-MDA: Assimilate all data at once but assimilate it Na times with
inflated measurement error covariance matrix (Emerick and
Reynolds, 4 papers). Motivated by 2009 PhD dissertation of
Rommelse, TUDelft.
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Multiple Data Assimilation

Assimilate the same data Na times with inflated measure error
covariance matrix, CD← αiCD. Provides regularization and avoids
over correction.
Single and multiple data assimilations are equivalent for the
linear-Gaussian case provided that

Na
∑

i=1

1

αi
= 1? (ex. αi = Na for i = 1, . . . , Na).

We replace a single (and potentially large correction) by Na
smaller corrections.
MDA can be interpreted as applying the first iteration of the
Levenberg-Marquardt algorithm Na times (Emerick and Reynolds,
2012) and is very similar to ensemble-based version of
regularizing Levenberg-Marquardt (Hanke, 1999, Iglesias and
Dawson, (2013); Iglesias (2014); Bergemann and Reich, “A
Mollified Ensemble Kalman Filter” (2010)
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ES-MDA Procedure

1 Choose the number of data assimilations, Na, and the coefficients
αi for i = 1, . . . , Na.

2 For i = 1 to Na:
1 Run the ensemble from time zero.
2 For each ensemble member, perturb the observation vector using

duc, j = dobs +
p
αiC

1/2
D zd ,

where zd ∼N (0, INd
).

3 Update the ensemble using

ma
j = m f

j + eC
f

MD

�

eC f
DD +αiCD

�−1�

duc, j − d f
j

�

,

for j = 1, 2, · · · , Ne.

Reynolds et al. Ensemble-based data assimilation 23 June 2015 (22/41)



Case Descriptions

ES-MDA, Historical Notes

For 1 parameter and 1D data vector, several people have shown
this samples correctly in the linear-Gaussian case: Rommelse
(2009), Oliver and Chen. “ Improved initial sampling for the
ensemble Kalman Filter” (2009); Bergemann and Reich, “A
Mollified Ensemble Kalman Filter” (2010).

Our proof of correct sampling in the linear Gaussian case was
general and based on linear algebra. Henning Omre pointed out
that the result is obvious it is based on simply factoring the
likelihood function and using sequential updating; also see
Bergemann and Reich.
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Field Case 1

Turbidite reservoir in Campus Basis.

Observed data:

20 producers: oil rate, water rate, GOR,
bottom-hole pressure.
10 water injection: bottom-hole pressure.

Initial ensemble:

200 models.
Porosity and permeability (> 125,000
active gridblocks).
Anisotropic ratio kv/kh.

Data assimilation with ES-MDA (4×) with
localization.
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Field Case 1: Model Plausibility – Permeability
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Field Case 1: Model Plausibility – Permeability

Prior # 200

Post # 200

Post # 1

Prior # 1
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Field Case 1: Well Data

Well # 30

MLS30‐3

Modelo base
Média

Modelos do conjunto

Dado observado

Prior Post

Well # 39

MLS39‐3

Modelo base
Média

Modelos do conjunto

Dado observado

Prior Post

Reynolds et al. Ensemble-based data assimilation 23 June 2015 (27/41)



Case Descriptions

Field Case 1: Time Spent in the Study

Generation of the initial ensemble (PETREL) ≈ 2 days.

Reservoir simulator conversion (ECLIPSE to IMEX) ≈ 2 weeks.

File preparation ≈ 1 day.

Test runs and sensitivity analysis ≈ 1 week.

Data assimilation (ES-MDA) ≈ 2 days?.

Total ≈ 4 weeks.

? Time for each reservoir simulation ≈ 1.5 hours.
Approximately 40 simultaneous reservoir simulations.
Total of 1,000 simulations (4 × 200 + 200).
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Adaptive ES-MDA

Larger inflation factors at early iterations damp the change in
model parameters and tend to prevent excessive roughness.

We propose two methods to choose the inflation factors.
The 1st method is intuitive and works by limiting the maximum
change of model parameters at each iteration.
The 2nd method is based on a theory on the regularization of
least-squares inverse problems.
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Method 1

At each iteration:
1 Run simulations for the ensemble.
2 Calculate the average normalized objective function

ONd =
1

Ne

1

Nd

Ne
∑

j=1

(d f
j − dobs)

T C−1
D (d

f
j − dobs)

3 Set α= 0.25 ∗ONd as the initial guess for the inflation factor.
4 Calculate the new model parameters using the ES-MDA update

equation.
5 Check all ensemble members to make sure that no model

parameter is changed by more than 2 (prior) standard deviations.
If violated, double α and return to step 4.
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Regularizing Levenberg-Marquardt, Hanke (1997);
Iglesias-Dawson (2013)

m`+1 = m`+ CM GT
` (G`CM GT

` +α`CD)
−1(dobs − g(m`))

The last equation is the same structure as ES-MDA:

ma
j = m f

j + eC
f
MD

�

eC f
DD+αiCD

�−1�

duc, j − d f
j

�

e.g.,
eC f

MD ≈ CM Ḡ and eC f
DD = ḠCM ḠT
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Regularizing Levenberg-Marquardt

At each iteration, α` is chosen such that

ρ2||C−1/2
D (dobs− g(m`))||2

≤ α2||C1/2
D (G`CM GT

` +αCD)
−1(dobs− g(m`))||2,

for some ρ with 0< ρ < 1. Larger ρ requires larger α` and more
iterations but we do more damping at each iteration.

By the simple analogy, we choose the αi adaptively (Adaptive
ES-MDA) by requiring at the ith data assimilation step:

ρ2||C−1/2
D (duc, j − d f

j )||
2

≤ α2
i ||C

1/2
D (C

f
DD +αiCD)

−1(duc, j − d f
j )||

2.
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Adaptive ES-MDA

Iglesias and Dawson also provide a stopping criteria to avoid
overmatching data, but we have not found a need to do that.
Instead we stop when the sequence of 1/αi sum to unity to
ensure correct sampling in the linear Gaussian case.

Reynolds et al. Ensemble-based data assimilation 23 June 2015 (33/41)



Case Descriptions

Method 2

At each iteration:
1 Run simulations for the ensemble.
2 Calculate the average normalized objective function ONd .
3 Set α= 0.25 ∗ONd as the initial guess for the inflation factor.
4 Check the following conditions for all ensemble members:

ρ2||C−1/2
D (duc, j−d f

j )||
2 ≤ α2||C1/2

D (C
f
DD+αCD)

−1(duc, j−d f
j )||

2.

If violated, double α and recheck.
5 Apply ES-MDA update to obtain new model parameters.
6 Stop when

∑

i
1
αi
= 1.
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Case Description
Three-dimensional PUNQ-S3 problem:

Six production wells under rate control.
Analytical aquifer along the rim of the reservoir
Three phase flow.

Observed data and Parameters:

Bottom hole pressure, gas-oil ratio, water cut.
Standard deviations of measurement error: 10
psi, 3%, 3%.
Case difficult: 3 layers have channels with no
hard data, large number of mixed parameters,
low noise levels; there are 247 data but some of
the pressure data are effectively lost.
φ, kh and kv fields, power law rel. perm.
paramters, initial depths of fluid contacts.

Well locations and the true
horizontal permeability
field, layer 3.
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Prior Realizations

(a) PRO-15 BHP (b) PRO-1 GOR (c) PRO-11 WCT

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

k rw
, k

row

W a t e r  s a t u r a t i o n

(a) krw and krow

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

k rg, k
rog

G a s  s a t u r a t i o n

(b) kr g and krog
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Posterior model - 1st realization of each ensemble (L3)

8x
ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9

16x
ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9

2 stdev
AES-1

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9

ρ = 0.2
AES-2

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9
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Posterior model - Standard deviation (L3)

8x
ES-MDA

E 1 E 3 E 4 E 5 E 6 E 7 E 8 E 9

16x
ES-MDA

E 1 E 3 E 4 E 5 E 6 E 7 E 8 E 9

2 stdev
AES-1

E 1 E 3 E 4 E 5 E 6 E 7 E 8 E 9

ρ = 0.2
AES-2

E 1 E 3 E 4 E 5 E 6 E 7 E 8 E 9
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Difference between posterior realizations and
true model

R j =
1

Nm
||C−1/2

M (m j −mt rue)||1

B
E S - M D A  8 x

C
E S - M D A  1 6 x

D
A E S - 1

E
A E S - 2

0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8

R
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Normalized objective function

543

38.38
16.92

5.67 5.16

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Prior ES-MDA        

(8x)

ES-MDA        

(16x)

AES-1 

(2stdev)

AES-2        

(ρ=0.2)

O
N

(8x) (16x) (2stdev) (ρ=0.2)
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Two Profound Questions

Should we really restrict methods for sampling in the
nonlinear-non-Gaussian case to those that sample correctly for the
linear Gaussian case?

Why do men’s clothes have buttons on the right while women’s
clothes have buttons on the left?
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