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Introduction

Stochastic processes (here discrete time)
20N —(z°. 2" ... . ZN)

May depend on parameters, i.e. Z%N|).
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Introduction

Stochastic processes (here discrete time)
20N —(z°. 2" ... . ZN)

May depend on parameters, i.e. Z%N|).

Subject them to partial observations
Ytk — (v v2 . .. YKy
in order to assess and calibrate models.

K < N (prediction), N = K (filtering), K > N (smoothing).

Conditional PDFs 7 zon(2%N|y K \) or ma(A|y ') through
Bayesian inference and Monte Carlo methods.
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Introduction McKean data analysis cycle

A typical scenario
Shadow or track an unknown reference solution
ergcﬂ = ‘V(Zr'l,f),
accessible through partial and noisy observations
yoo=h(zl) + €, n>1.

We only know that z%; is drawn from a random variable Z°.
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Introduction McKean data analysis cycle

Ensemble prediction relies on M independent realizations
z? = Z%w;) (MC or quasi-MC) from the initial Z° and associated
trajectories

zZM = w(z ), n>o0, i=1,...,M.

I
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Ensemble prediction relies on M independent realizations
z? = Z%w;) (MC or quasi-MC) from the initial Z° and associated
trajectories

zZM = w(z ), n>o0, i=1,...,M.

I

Analysis step transforms the forecast ensemble {z/ = z"'}
into an analysis ensemble {z?} using Bayes theorem:
7-‘-Y(yobs|z) 7TZf(Z)

7TY(yobs) '

7za(Z|Yobs) =

Continue ensemble prediction with {z""" = z3}.
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e R s e
Summary of the McKean approach to the analysis step:
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Ref.: Del Moral (2004), CJC & SR (2013), YC & SR (2014).
Data assimilation 23 June 2014

5/29



Introduction McKean data analysis cycle

Parametric statistics: The Gaussian choice

(A) Fit a Gaussian N(Z’, P) to the forecast ensemble {z/} and
assume that his linear. Then the analysis is also Gaussian
N(z2, P?) with

72 =Z2" - K(HZ' - yos),  P?=P'— KHP'.

Here K denotes the Kalman gain matrix.
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Non-parametric statistics: Empirical measures
(B) Use the empirical measure

1 M
w(2) = 15 >0z~ 2])
i=1
to define the analysis measure
M
m(2) =) wi(z - z])
i=1

with importance weights

eXp (_%(h(zlf) - yobs)T’qi1 (h(zlf) - yobs))
S/ exp (= 5(h(Z)) — Yos) TR (R(Z]) — Yous))

I' =
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Introduction McKean data analysis cycle

Implementation of the McKean approach then either requires
coupling two Gaussians (approach A) or two empirical
measures (approach B).

Approach A: ensemble Kalman filters (Evensen, 2006)
Approach B: particle filters (Doucet et al, 2001).
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Introduction McKean data analysis cycle

Implementation of the McKean approach then either requires
coupling two Gaussians (approach A) or two empirical
measures (approach B).

Approach A: ensemble Kalman filters (Evensen, 2006)
Approach B: particle filters (Doucet et al, 2001).

Optimal couplings in the sense of minimizing some cost
function are known in both cases (CJC & SR, 2013).

We next provide a unifying mathematical framework in form of
linear ensemble transform filters (LETFs) (YC & SR, 2014).
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Linear ensemble transform filters

The analysis steps of an ensemble Kalman filter (EnKF) as well
as the resampling step of a particle filter are of the form

M
a __ fa.
Zj = E Z,-S,j,
i=1

where {z/}M, is the forecast ensemble and {z?}¥, is the
analysis ensemble.
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Linear ensemble transform filters

The analysis steps of an ensemble Kalman filter (EnKF) as well
as the resampling step of a particle filter are of the form

M
a __ fa.
Zj = E Z,-S,j,
i=1

where {z/}M, is the forecast ensemble and {z?}¥, is the
analysis ensemble.

(i) The matrix S = {s;} € R*M depends on y, and the forecast
ensemble.

(i) S can be the realization of a matrix-valued RV S : Q — RMxM,
ie. S =Sw).
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Linear ensemble transform filters Optimal transportation

The ensemble transform particle filter (ETPF) (SR, 2013) is
determined by a coupling T € RM*M petween the discrete
random variables

ZQ—{z, . ... 2z, with PZ[]=1/M

and
Z2:Q - {z ... .z} with P[Z]]=w,

respectively.
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Linear ensemble transform filters Optimal transportation

The ensemble transform particle filter (ETPF) (SR, 2013) is
determined by a coupling T € RM*M petween the discrete
random variables

ZQ—{z, . ... 2z, with PZ[]=1/M

and
Z2:Q - {z ... .z} with P[Z]]=w,
respectively.

A coupling T has to satisfy f; > 0,

M M
th/:1/M7 Ztij:Wi'
i=1 j=1
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O el e
Chosing a coupling that maximizes the correlation between
forecast and analysis leads to an optimal transport problem

with cost
J{ty =D llzf - ZIPt.

i
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O el e
Chosing a coupling that maximizes the correlation between
forecast and analysis leads to an optimal transport problem

with cost
J{ty =D llzf - ZIPt.

i

Leads to the celebrated Monge-Kantorovitch problem:

r (20 Z%) = ar inf E zH— 2212
Tyiza(2', 2%) gfrzfza(Z’,za)eﬂ(wzf,wza) Ztza [H I }

as M — oo (McCann, 1996, SR, 2013).
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O el e
Chosing a coupling that maximizes the correlation between
forecast and analysis leads to an optimal transport problem

with cost
J{ty =D llzf - ZIPt.
ij

Leads to the celebrated Monge-Kantorovitch problem:

% 5.(2". Z2%) = ar inf E zH— 2212
Zi7a(2', 29) gfrzfza(Z’,za)eﬂ(wzf,wza) Ztza [H I }

as M — oo (McCann, 1996, SR, 2013).

Let us denote the minimize by T*, then the ETPF is given by

M

a __ fax

z; _ME zit;.
i=1
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Linear ensemble transform filters Convergence study

Convergence rate for a single analysis step. The prior is
two-dimensional uniform and quasi-MC samples are being
used.

RMS error in variance for QMC samples

10 ¢ —e— SIS |
——SIR
——ETPF

1072 107"
1/sample size
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Linear ensemble transform filters Example: Lorenz-63

Lorenz-63 model with outputs generated every 0.12 units of
time. Only the x variable is observed with measurement error
variance equal to R = 8.

Each DA algorithm is implemented either with ensemble
inflation or particle rejuvenation. A total of 20,000 assimilation
steps are performed.

We compare the resulting time-averaged RMSEs:

20000
1

; 20000

1227 = Zi||?.
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Linear ensemble transform filters Example: Lorenz-63

1. . . . .
81 0 20 30 40 50 60

Ensemble Size
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Linear ensemble transform filters Example: Lorenz-63

On the curse of dimensionality

Dynamical system

zn+1 — zn

with initial PDF N(0, /), dimension of state space N,, reference
solution z7, = 0.

T

Yuan Cheng & Sebastian Reich (UP and UoR) Data assimilation 23 June 2014 15/29



Linear ensemble transform filters Example: Lorenz-63

On the curse of dimensionality

Dynamical system

zn+1 — zn

with initial PDF N(0, /), dimension of state space N,, reference
solution z7, = 0.

At iteration index n we observe the nth component of the state

vector, i.e.
Yoo = €020+ &, § ~N(0,R)

with R =0.16, ¢/ = (0,...,0,1,0,...,0) the nth unit vector in
RN and K = N,.
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A SIS particle filter leads to the following simple update for the
weights and particles

_ _ 1 aT50_yn )2
Vvln X W’n 1e ZH(enzi .yobs) , Zln — Z,O

effective sample size

o] 20 40 60 80 100
time step

Effective sample size
N 1
eff — ;
>oi(wfh)?
] 1
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Linear ensemble transform filters Example: Lorenz-63

averaged RMSE for ensemble size M=10
2.6 T . .
—— SIS filter
2.4 ——EnKF i
—e— localised SIS filter -
2.2 o localised EnKF  p—" 1

0 50 100 150 200
dimension of state space

RMSEs (normalised by v/R) are based on either

m No( M
Z"=>"w'z) or Z"=)" w' (e[ 2’} e.
i— = Uizt

Yuan Cheng & Sebastian Reich (UP and UoR) Data assimilation 23 June 2014 17/29



Linear ensemble transform filters Example: Lorenz-63

Lessons to learn

1) Monte Carlo methods generate spurious
correlations/dependencies between dynamic variables.

2) Correlation structures need to be explicitly built into a particle
filter. This can be achieved via localization or appropriate model
hierarchies.

3) Localization effectively increases the sample size.
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Spatially extended dynamical systems

Spatially extended system with x € R taking the role of the
spatial variable. The forecast ensemble is now {z/(x)} and the

LETF becomes y

2(x) = 32X s,

i=1
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Spatially extended dynamical systems

Spatially extended system with x € R taking the role of the
spatial variable. The forecast ensemble is now {z/(x)} and the

LETF becomes y

2(x) = 32X s,

i=1

This does not work unless M is huge. Instead one uses

localization:
M

zi(x) =Y _ 2/(x) s§(x).

i=1

Analysis fields need to have sufficient spatial regularity, /.e.,
z! € H should imply z2 € H!
Data assimilation 23 June 2014
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Localization for ETPF
R-localization for the ETPF:

Define a localization function with localization radius r,. > 0, e.g.

1—|x—X|/ho for |x—x'| <n
_ / — ocC — 0oCy
px =x) { 0 else.
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Localization for ETPF
R-localization for the ETPF:

Define a localization function with localization radius r,. > 0, e.g.

1—|x—X|/ho for |x—x'| <n
_ / — ocC — 0oCy
px =x) { 0 else.

Depending on the spatial location x € R, the error variance Ry of an
observation at x, is modified to

Aot () == plx = x¢) By

and gives rise to localized importance weights

(30 5 37 0xp (52 (56) ~ 2 () B ()2 () ~ Zm(xc) )
k
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Localization for ETPF
R-localization for the ETPF:

Define a localization function with localization radius r,. > 0, e.g.

1—|x—X|/ho for |x—x'| <n
_ / — ocC — 0oCy
px =x) { 0 else.

Depending on the spatial location x € R, the error variance Ry of an
observation at x, is modified to

Aot () == plx = x¢) By

and gives rise to localized importance weights

(30 5 37 0xp (52 (56) ~ 2 () B ()2 () ~ Zm(xc) )
k

An optimal transport problem is now solved for each computational grid point
x = x; with localized transport cost

(2!, 2)(x) == [ ol = XY (X) = 27(X) P ax'
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Spatially extended systems Example: Analysis for spatial signal

Example. Random field (superposition of Gaussians):
z(x)=> &n(x;x,0%),  xe[-11],

with mesh-size Ax = 0.005, grid points x; = iAx, random
coefficients ¢ ~ N(0, Ax), and o2 = 0.1.

Observations are taken in intervals of Ax,,s = 0.025 (every 5 grid
points). The measurement errors are i.i.d. Gaussian with
variance R = 0.4.
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Spatially extended systems Example: Analysis for spatial signal

Typical field and observations:

reference solution and observations

-3 * * -

—4 . . .
-1 -0.5 0 0.5 1
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Spatially extended systems Example: Analysis for spatial signal

Root mean square errors (RMSE) for varying ensemble sizes
and localization radii:

RMSE for observations with A Xops = 0.025

1.6 ; ; ; ; ; : : ,
—— T, = 0005
1al Moo= 0.05

/\//\/ r =0.25
loc
1.2 ——Tioe = 0-5

RMSE

0.8f

0.61 4

2 . . . . . . . .
° 10 20 30 40 50 60 70 80 90 100

ensemble size

Note: R'/2 ~ 0.63.
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Example: Analysis for spatial signal
Another example but now with localization in spectral space.

Signals are periodic and weakly correlated in spectral space,
N, = 128 grid points and M = 16 ensemble members, every grid
point observed.

Localized ETPF in Spectral Space

[0]
-1 .
(0] 0.2 0.4 0.6 0.8 1
1 T
ok i
1 . . . .
(0] 0.2 0.4 0.6 0.8 1
1

: :
‘ —posterior ensemble‘

[0} 0.2 0.4 0.6 0.8 1
space
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Spatially extended systems Example: Lorenz-96

Example. The Lorenz-96 ODE model

de U—1Uj11 — Uj—2Uj_1 ,

= _ — u; =1,...,4

dt 3Ax Yk g=1....40,
can be thought of as the discretization of the forced-damped

advection equation

ou_ 1oy
ot 2 0x

—u+F.
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Spatially extended systems Example: Lorenz-96

Example. The Lorenz-96 ODE model
dup — UiqUjpt — Uji2Uj
dt 3Ax

can be thought of as the discretization of the forced-damped
advection equation

—u+F,  j=1,....40,

ou_ 1oy
ot 2 0x

—u+F.

Every other grid point is observed in intervals of At = 0.12. The
error variance is R = 8.
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Spatially extended systems Example: Lorenz-96

Time averaged spatial correlation of solutions to the Lorenz-96
ODE:

correlation factor

distance
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Spatially extended systems Example: Lorenz-96

d)
2.4 ; ; ; ; ; :
2.3f RO ]
-+ -ETPF_R1
2.2} -¢ ETPF_R2]]

10 20 30 40 50 60 70 80
Ensemble Size
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Future work and references

A few of topics for future work:

e replace linear transport by approximations (Earth mover’s
distance) such as Sinkhorn (Doucet, Cuturi, 2013), space
filling Hilbert curves (Chopin, 2014), or hierarchical
approaches

e time-continuous LETF formulations
M
dz; = f(z)dt + ) _ zds; + d=;
i=1
(Crisan et al, 2010, Sean Meyn et al, 2013, CR, 2013).

e Choice of localization function: For linear systems perfect
localization can be achieved in spectral space (Harlim &
Majda, 2012).

e Gaussian mixture models, ensemble smoother, adaptive
methods, ...
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Future work and references
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