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Introduction

Stochastic processes (here discrete time)

Z 0:N = (Z 0, Z 1, . . . , Z N)

May depend on parameters, i.e. Z 0:N |λ.

Subject them to partial observations

Y 1:K = (Y 1, Y 2, . . . , Y K}

in order to assess and calibrate models.

K < N (prediction), N = K (filtering), K > N (smoothing).

Conditional PDFs πZ 0:N (z0:N |y1:K , λ) or πΛ(λ|y1:K ) through
Bayesian inference and Monte Carlo methods.
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Introduction McKean data analysis cycle

A typical scenario

Shadow or track an unknown reference solution

zn+1
ref = Ψ(zn

ref),

accessible through partial and noisy observations

yn
obs = h(zn

ref) + ξn, n ≥ 1.

We only know that z0
ref is drawn from a random variable Z 0.
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Introduction McKean data analysis cycle

Ensemble prediction relies on M independent realizations
z0

i = Z 0(ωi) (MC or quasi-MC) from the initial Z 0 and associated
trajectories

zn+1
i = Ψ(zn

i ; λ), n ≥ 0, i = 1, . . . , M.

Analysis step transforms the forecast ensemble {z f
i = zn+1

i }
into an analysis ensemble {za

i } using Bayes theorem:

πZ a(z|yobs) =
πY (yobs|z) πZ f (z)

πY (yobs)
.

Continue ensemble prediction with {zn+1
i = za

i }.
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Introduction McKean data analysis cycle

Summary of the McKean approach to the analysis step:

PDFs

RVs

MC

Ref.: Del Moral (2004), CJC & SR (2013), YC & SR (2014).
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Introduction McKean data analysis cycle

Parametric statistics: The Gaussian choice

(A) Fit a Gaussian N(z̄ f , P f ) to the forecast ensemble {z f
i } and

assume that h is linear. Then the analysis is also Gaussian
N(z̄a, Pa) with

z̄a = z̄ f − K (Hz̄ f − yobs), Pa = P f − KHP f .

Here K denotes the Kalman gain matrix.
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Introduction McKean data analysis cycle

Non-parametric statistics: Empirical measures

(B) Use the empirical measure

πf (z) =
1
M

M∑
i=1

δ(z − z f
i )

to define the analysis measure

πa(z) =
M∑

i=1

wiδ(z − z f
i )

with importance weights

wi =
exp

(
−1

2(h(z f
i )− yobs)

T R−1(h(z f
i )− yobs)

)∑M
j=1 exp

(
−1

2(h(z f
j )− yobs)T R−1(h(z f

j )− yobs)
)
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Introduction McKean data analysis cycle

Implementation of the McKean approach then either requires
coupling two Gaussians (approach A) or two empirical
measures (approach B).

Approach A: ensemble Kalman filters (Evensen, 2006)

Approach B: particle filters (Doucet et al, 2001).

Optimal couplings in the sense of minimizing some cost
function are known in both cases (CJC & SR, 2013).

We next provide a unifying mathematical framework in form of
linear ensemble transform filters (LETFs) (YC & SR, 2014).
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Linear ensemble transform filters

The analysis steps of an ensemble Kalman filter (EnKF) as well
as the resampling step of a particle filter are of the form

za
j =

M∑
i=1

z f
i sij ,

where {z f
i }M

i=1 is the forecast ensemble and {za
i }M

i=1 is the
analysis ensemble.

(i) The matrix S = {sij} ∈ RM×M depends on yobs and the forecast
ensemble.

(ii) S can be the realization of a matrix-valued RV S : Ω → RM×M ,
i.e. S = S(ω).
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Linear ensemble transform filters Optimal transportation

The ensemble transform particle filter (ETPF) (SR, 2013) is
determined by a coupling T ∈ RM×M between the discrete
random variables

Z f : Ω → {z f
1, . . . , z f

M} with P[z f
i ] = 1/M

and
Z a : Ω → {z f

1, . . . , z f
M} with P[z f

i ] = wi ,

respectively.

A coupling T has to satisfy tij ≥ 0,

M∑
i=1

tij = 1/M,

M∑
j=1

tij = wi .
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Linear ensemble transform filters Optimal transportation

Chosing a coupling that maximizes the correlation between
forecast and analysis leads to an optimal transport problem
with cost

J({tij} =
∑

i,j

‖z f
i − z f

j ‖2tij .

Leads to the celebrated Monge-Kantorovitch problem:

π∗Z f Z a(z f , za) = arg inf
πZf Za (z f ,za)∈Π(πZf ,πZa )

EZ f Z a

[
‖z f − za‖2]

as M →∞ (McCann, 1996, SR, 2013).

Let us denote the minimize by T ∗, then the ETPF is given by

za
j = M

M∑
i=1

z f
i t
∗
ij .
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Linear ensemble transform filters Convergence study

Convergence rate for a single analysis step. The prior is
two-dimensional uniform and quasi-MC samples are being
used.
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Linear ensemble transform filters Example: Lorenz-63

Lorenz-63 model with outputs generated every 0.12 units of
time. Only the x variable is observed with measurement error
variance equal to R = 8.

Each DA algorithm is implemented either with ensemble
inflation or particle rejuvenation. A total of 20,000 assimilation
steps are performed.

We compare the resulting time-averaged RMSEs:√√√√20000∑
n=1

1
20000

‖z̄a,n − zn
ref‖2.
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Linear ensemble transform filters Example: Lorenz-63
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Linear ensemble transform filters Example: Lorenz-63

On the curse of dimensionality

Dynamical system
zn+1 = zn

with initial PDF N(0, I), dimension of state space Nz , reference
solution zn

ref ≡ 0.

At iteration index n we observe the nth component of the state
vector, i.e.

yn
obs = eT

n zn
ref + ξn, ξ ∼ N(0, R)

with R = 0.16, eT
n = (0, . . . , 0, 1, 0, . . . , 0) the nth unit vector in

RNz , and K = Nz .
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Linear ensemble transform filters Example: Lorenz-63

A SIS particle filter leads to the following simple update for the
weights and particles

wn
i ∝ wn−1

i e−
1

2R (eT
n z0

i −yn
obs)

2
, zn

i = z0
i .

0 20 40 60 80 100

100.1

100.3

100.5

100.7

100.9

effective sample size

time step

Effective sample size

Mn
eff =

1∑
i(w

n
i )2 , M0

off = 10.
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Linear ensemble transform filters Example: Lorenz-63
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RMSEs (normalised by
√

R) are based on either

z̄n =
M∑

i=1

wn
i z0

i or z̄n =
Nz∑
l=1

{
M∑

i=1

wn
i (l)eT

l z0
i

}
el .
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Linear ensemble transform filters Example: Lorenz-63

Lessons to learn

1) Monte Carlo methods generate spurious
correlations/dependencies between dynamic variables.

2) Correlation structures need to be explicitly built into a particle
filter. This can be achieved via localization or appropriate model
hierarchies.

3) Localization effectively increases the sample size.
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Spatially extended systems

Spatially extended dynamical systems

Spatially extended system with x ∈ R taking the role of the
spatial variable. The forecast ensemble is now {z f

i (x)} and the
LETF becomes

za
i (x) =

M∑
i=1

z f
i (x) sij .

This does not work unless M is huge. Instead one uses
localization:

za
i (x) =

M∑
i=1

z f
i (x) sij(x).

Analysis fields need to have sufficient spatial regularity, i.e.,
z f

i ∈ H should imply za
i ∈ H!
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Spatially extended systems Localization for ETPF

R-localization for the ETPF:

Define a localization function with localization radius rloc > 0, e.g.

ρ(x − x ′) =

{
1− |x − x ′|/rloc for |x − x ′| ≤ rloc,
0 else.

Depending on the spatial location x ∈ R, the error variance Rk of an
observation at xk is modified to

R̃−1
k (x) := ρ(x − xk ) R−1

k

and gives rise to localized importance weights

wi(x) ∝
∑

k

exp
(
−1

2
(z f

i (xk )− zobs(xk ))R̃−1
k (x)(z f

i (xk )− zobs(xk ))

)
.

An optimal transport problem is now solved for each computational grid point
x = xi with localized transport cost

d(z f , za)(xi) :=

∫
R

ρ(xi − x ′)‖z f (x ′)− za(x ′)‖2 dx ′.
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Spatially extended systems Example: Analysis for spatial signal

Example. Random field (superposition of Gaussians):

z(x) =
∑

i

ξi n(x ; xi , σ
2), x ∈ [−1, 1],

with mesh-size ∆x = 0.005, grid points xi = i∆x , random
coefficients ξi ∼ N(0, ∆x), and σ2 = 0.1.

Observations are taken in intervals of ∆xobs = 0.025 (every 5 grid
points). The measurement errors are i.i.d. Gaussian with
variance R = 0.4.
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Spatially extended systems Example: Analysis for spatial signal

Typical field and observations:

−1 −0.5 0 0.5 1
−4

−3
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−1

0

1

2

3

space

reference solution and observations
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Spatially extended systems Example: Analysis for spatial signal

Root mean square errors (RMSE) for varying ensemble sizes
and localization radii:

10 20 30 40 50 60 70 80 90 100
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ensemble size
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rloc = 0.05
rloc = 0.25
rloc = 0.5

Note: R1/2 ≈ 0.63.
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Spatially extended systems Example: Analysis for spatial signal

Another example but now with localization in spectral space.
Signals are periodic and weakly correlated in spectral space,
Nz = 128 grid points and M = 16 ensemble members, every grid
point observed.

0 0.2 0.4 0.6 0.8 1
−1

0

1
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Spatially extended systems Example: Lorenz-96

Example. The Lorenz-96 ODE model

duj

dt
= −uj−1uj+1 − uj−2uj−1

3∆x
− uj + F , j = 1, . . . , 40,

can be thought of as the discretization of the forced-damped
advection equation

∂u
∂t

= −1
2

∂(u)2

∂x
− u + F .

Every other grid point is observed in intervals of ∆t = 0.12. The
error variance is R = 8.
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Spatially extended systems Example: Lorenz-96

Time averaged spatial correlation of solutions to the Lorenz-96
ODE:
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Spatially extended systems Example: Lorenz-96
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Future work and references

A few of topics for future work:

replace linear transport by approximations (Earth mover’s
distance) such as Sinkhorn (Doucet, Cuturi, 2013), space
filling Hilbert curves (Chopin, 2014), or hierarchical
approaches
time-continuous LETF formulations

dzj = f (zj)dt +
M∑

i=1

zidsij + dΞj

(Crisan et al, 2010, Sean Meyn et al, 2013, CR, 2013).
Choice of localization function: For linear systems perfect
localization can be achieved in spectral space (Harlim &
Majda, 2012).
Gaussian mixture models, ensemble smoother, adaptive
methods, ...
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