Iterative Regularizing Ensemble Kalman Methods for Inverse Problems

Marco Iglesias

School of Mathematical Sciences University of Nottingham

June 24th, 2014 EnKF workshop, Bergen, Norway

The forward map

Let $G: X \to Y$ be the forward (parameter-to-observations) map that arises from PDE-constrained problem where u is an unknown parameter (or property)

$$u \longrightarrow G(u)$$

(G nonlinear, compact, sequentially weakly closed operator between separable Hilbert spaces X and Y.)

The forward map

Let $G: X \to Y$ be the forward (parameter-to-observations) map that arises from PDE-constrained problem where u is an unknown parameter (or property)

$$u \longrightarrow G(u)$$

(G nonlinear, compact, sequentially weakly closed operator between separable Hilbert spaces X and Y.)

Example: steady Darcy flow

$$\begin{aligned} -\nabla \cdot e^{u} \nabla p &= f & \text{in } D, \\ -e^{u} \nabla p \cdot n &= B_{N} & \text{in } \Gamma_{N}. \\ p &= B_{D} & \text{in } \Gamma_{D} \end{aligned}$$

where $\partial D = \Gamma_N \cup \Gamma_D$.

 $u = \log(K) \in L^{\infty}(D) \longrightarrow G(u) = \{p(x_i)\}_{i=1}^N \in \mathbb{R}^M$

The data and the noise level

Let u^{\dagger} be the "truth", i.e. $G(u^{\dagger})$ are the exact (noise-free) observations. Assume that we are given *data*

$$y = G(u^{\dagger}) + \xi^{\dagger}$$

where ξ^{\dagger} is noise and we are given a noise level η such that

 $||y - G(u^{\dagger})|| \leq \eta$

The data and the noise level

Let u^{\dagger} be the "truth", i.e. $G(u^{\dagger})$ are the exact (noise-free) observations. Assume that we are given *data*

$$y = G(u^{\dagger}) + \xi^{\dagger}$$

where ξ^{\dagger} is noise and we are given a noise level η such that

 $||y - G(u^{\dagger})|| \leq \eta$

The inverse problem

Given y and η find approximate solutions u to $G(u^{\dagger}) = G(u)$.

The data and the noise level

Let u^{\dagger} be the "truth", i.e. $G(u^{\dagger})$ are the exact (noise-free) observations. Assume that we are given *data*

$$y = G(u^{\dagger}) + \xi^{\dagger}$$

where ξ^{\dagger} is noise and we are given a noise level η such that

 $||y - G(u^{\dagger})|| \leq \eta$

The inverse problem

Given *y* and η find approximate solutions *u* to $G(u^{\dagger}) = G(u)$.

III-posedness (Hadamard)

- Existence
- Uniqueness
- Continuity with respect to the data y

Lack of continuity (lack of stability) with respect to the data We can construct a sequence $u_n \in X$ such that

but $G(u_n) \rightarrow G(u)$ $U_n \not\rightarrow U$

Lack of continuity (lack of stability) with respect to the data We can construct a sequence $u_n \in X$ such that

$$u_n \not\rightarrow u$$
 but $G(u_n) \rightarrow G(u)$

If we want to compute with standard optimization

$$u = \arg\min_{u \in X} ||y - G(u)||^2 \to \min$$

we may observe semiconvergence behavior [Kirsch, 1996]

Lack of continuity (lack of stability) with respect to the data We can construct a sequence $u_n \in X$ such that

$$u_n \not\rightarrow u$$
 but $G(u_n) \rightarrow G(u)$

If we want to compute with standard optimization

$$u = \arg\min_{u \in X} ||y - G(u)||^2 \to \min$$

we may observe semiconvergence behavior [Kirsch, 1996]

Regularization

Construct an approximation u^{η} that is stable, i.e. such that

$$u^\eta
ightarrow u$$
 as $\eta
ightarrow 0$

where

$$G(u) = G(u^{\dagger})$$

Regularization

Regularization Approaches (for nonlinear operators)

- Regularize-then-compute (e.g. Tikhonov, TSVD)
- Compute while regularizing (Iterative Regularization) [Kaltenbacher, 2010]
 - regularizing Levenberg-Marquardt
 - Landweber iteration
 - truncated Newton-CG
 - iterative regularized Gauss-Newton method

Regularization

Regularization Approaches (for nonlinear operators)

- Regularize-then-compute (e.g. Tikhonov, TSVD)
- Compute while regularizing (Iterative Regularization) [Kaltenbacher, 2010]
 - regularizing Levenberg-Marquardt
 - Landweber iteration
 - truncated Newton-CG
 - iterative regularized Gauss-Newton method

Aim of this work:

Apply ideas from Iterative Regularization to develop ensemble Kalman methods as *derivative-free* tools for solving nonlinear ill-posed inverse problem in a general abstract framework.

PDE-constrained Inverse Problems

The Classical (deterministic) Inverse Problem

Given data $y \in Y$ find

$$u = \arg\min_{u \in X} ||y - G(u)||^2 \to \min$$

PDE-constrained Inverse Problems

The Classical (deterministic) Inverse Problem

Given data $y \in Y$ find

$$u = \arg\min_{u \in X} ||y - G(u)||^2 \to \min$$

Consider $\mu_0(u) = \mathbb{P}(u)$ the prior on u and

$$y = G(u) + \xi, \qquad \xi \sim \mathcal{N}(0, \Gamma)$$

The Bayesian Inverse Problem

Characterize the posterior $\mu^{y}(u) = \mathbb{P}(u|y)$:

$$rac{d\mu^y}{d\mu_0}(u)\propto \expig(-\Phi(u;y)ig)$$

where

$$\Phi(u; y) = \frac{1}{2} ||\Gamma^{-1/2}(y - G(u))||^2$$

(Nottingham University)

Overview of this work

Reference

Iterative Regularization for Data Assimilation in Petroleum Reservoirs Multiscale Inverse Problems Workshop, Warwick University, June 17-19, 2013. http://www2.warwick.ac.uk/fac/sci/maths/research/events/2012-2013/nonsymp/mip/schedule/

Iterative ensemble Kalman "Smoother"

Assume that the data $y = G(u^{\dagger}) + \xi$ with $\xi \sim N(0, \Gamma)$.

Consider an initial ensemble $u_0^{(1)}, \ldots, u_0^{(N_e)}$.

Prediction $u_n^{(j)} \rightarrow G(u_n^{(j)})$

$$\begin{split} \overline{u}_{n} &= \frac{1}{N_{e}} \sum_{j=1}^{N_{e}} u_{n}^{(j)}, \qquad \overline{w}_{n} = \frac{1}{N_{e}} \sum_{j=1}^{N_{e}} G(u_{n}^{(j)}) \\ C^{ww} &= \frac{1}{N_{e}-1} \sum_{j=1}^{N_{e}} (G(u_{n}^{(j)}) - \overline{w}_{n}) (G(u_{n}^{(j)}) - \overline{w}_{n})^{T}, \\ C^{uw} &= \frac{1}{N_{e}-1} \sum_{j=1}^{N_{e}} (u_{n}^{(j)} - \overline{u}_{n}) (G(u_{n}^{(j)}) - \overline{w}_{n})^{T} \end{split}$$

Analysis $u_n^{(j)} \rightarrow u_{n+1}^{(j)}$

$$u_{n+1}^{(j)} = u_n^{(j)} + C^{uw}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_n^{(j)})), \qquad y^{(j)} = y + \eta^{(j)}$$

(Nottingham University)

Augmented analysis

$$u_{n+1}^{(j)} = u_n^{(j)} + C^{uw}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_n^{(j)}))$$

$$w_{n+1}^{(j)} = G(u_n^{(j)}) + C^{ww}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_n^{(j)}))$$

Augmented analysis

$$u_{n+1}^{(j)} = u_n^{(j)} + C^{uw}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_n^{(j)}))$$

$$w_{n+1}^{(j)} = G(u_n^{(j)}) + C^{ww}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_n^{(j)}))$$

$$z_{n+1}^{(j)} = z_n^{(j)} + C^t H^T \left(H C^t H^T + \Gamma \right)^{-1} (y^{(j)} - H z_n^{(j)})$$

where

$$z = (u, w)^T \in Z \equiv X \times Y$$
 $H = (0, I)$ $C^f = \begin{pmatrix} C^{uu} & C^{uw} \\ (C^{uw})^T & C^{ww} \end{pmatrix}$

Augmented analysis

$$u_{n+1}^{(j)} = u_n^{(j)} + C^{uw}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_n^{(j)}))$$

$$w_{n+1}^{(j)} = G(u_n^{(j)}) + C^{ww}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_n^{(j)}))$$

$$z_{n+1}^{(j)} = z_n^{(j)} + C^t H^T \left(H C^t H^T + \Gamma \right)^{-1} (y^{(j)} - H z_n^{(j)})$$

where

$$z = (u, w)^T \in Z \equiv X \times Y$$
 $H = (0, I)$ $C^f = \begin{pmatrix} C^{uu} & C^{uw} \\ (C^{uw})^T & C^{ww} \end{pmatrix}$

Kalman as a Tikhonov-regularized linear inverse problems

$$\overline{Z}_{n+1} = \frac{1}{N_e} \sum_{j=1}^{N_e} z_{n+1}^{(j)} = \operatorname{argmin}_{z} \left(||\Gamma^{-\frac{1}{2}}(y - Hz)||^2 + ||(C^f)^{-\frac{1}{2}}(z - \overline{z}_n)||_{z}^2 \right)$$

where $\overline{z}_n \equiv \frac{1}{N_e} \sum_{j=1}^{N_e} z_n^{(j)}$.

Kalman as a Tikhonov-regularized linear inverse problems

$$\overline{z}_{n+1} = \operatorname{argmin}_{z} \left(||\Gamma^{-\frac{1}{2}}(y - Hz)||^{2} + ||(C^{f})^{-\frac{1}{2}}(z - \overline{z}_{n})||_{z}^{2} \right)$$

In summary, this iterative method is solving a sequence of linear inverse problems: Given y, find z such that

$$y = Hz$$

Kalman as a Tikhonov-regularized linear inverse problems

$$\overline{z}_{n+1} = \operatorname{argmin}_{z} \left(||\Gamma^{-\frac{1}{2}}(y - Hz)||^{2} + ||(C^{f})^{-\frac{1}{2}}(z - \overline{z}_{n})||_{z}^{2} \right)$$

In summary, this iterative method is solving a sequence of linear inverse problems: Given y, find z such that

$$y = Hz$$

Preliminary work on Kalman methods for inverse problems

M. Iglesias, K. Law and A.M. Stuart,

Ensemble Kalman methods for inverse problems. *Inverse Problems*. 29 (2013) 045001 http://arxiv.org/abs/1209.2736

- This algorithm can be formulated in a general abstract framework on Hilbert spaces.
- No localization/inflation/truncation of any type was considered. The main focus was the initial ensemble.
- We consider both initial ensemble sample from the prior but also the first elements of a basis.
- Invariance subspace property $\mathcal{A} = \operatorname{span}\{u_0^{(j)}\}_{j=1}^{N_e}$.

```
Theorem (Iglesias, Law, Stuart)
```

 $\overline{u}_n^{(j)} \in \mathcal{A} \text{ for all } (n,j) \in \mathbb{N} \times \{1,\cdots,N_e\}.$

• Even though the problem is defined on a compact subspace A, we found that further regularization is needed.

Synthetic experiment with a toy (groundwater) model

Consider

- Initial ensemble generated from a prior $\mathbb{P}(u) = N(\overline{u}, C)$.
- Let G(u) be the forward operator that arises from a reservoir model.

Consider a truth $u^{\dagger} \sim \mathbb{P}(u)$ from which synthetic data are generated by $y = G(u^{\dagger}) + \eta$ $\eta \sim N(0, \Gamma)$ (prescribed Γ covariance of the Gaussian noise).

Reconstructing the truth with the mean of an ensemble of $N_e = 75$ (with small noise)

Performance

Recall the standard update formula yields a mean defined by

$$\overline{Z}_{n+1} = \operatorname{argmin}_{Z} \left(||\Gamma^{-\frac{1}{2}}(y - Hz)||^{2} + ||(C^{f})^{-\frac{1}{2}}(z - \overline{z}_{n})||_{Z}^{2} \right)$$

Recall the standard update formula yields a mean defined by

$$\overline{z}_{n+1} = \operatorname{argmin}_{z} \left(||\Gamma^{-\frac{1}{2}}(y - Hz)||^{2} + ||(C^{f})^{-\frac{1}{2}}(z - \overline{z}_{n})||_{z}^{2} \right)$$

We propose in

M. A. Iglesias

Iterative regularization for ensemble-based data assimilation in reservoir models. *In review (http://arxiv.org/abs/1401.5375).* 2014 (Submitted to Computational Geosciences)

to modify the ensemble method

$$\boldsymbol{z}_{n+1}^{(j)} = \boldsymbol{z}_n^{(j)} + \boldsymbol{C}^{\boldsymbol{f}} \boldsymbol{H}^{\mathsf{T}} \left(\boldsymbol{H} \boldsymbol{C}^{\boldsymbol{f}} \boldsymbol{H}^{\mathsf{T}} + \boldsymbol{\alpha} \boldsymbol{\Gamma} \right)^{-1} (\boldsymbol{y}^{(j)} - \boldsymbol{H} \boldsymbol{z}_n^{(j)})$$

so that the mean is given by

$$\overline{z}_{n+1} = \operatorname{argmin}_{z} \left(||\Gamma^{-\frac{1}{2}}(y - Hz)||^{2} + \alpha ||(C^{f})^{-\frac{1}{2}}(z - \overline{z}_{n})||_{z}^{2} \right)$$

i.e. Regularizing Kalman as in Levenberg-Marquardt!! where a selection of α guided by Iterative Regularization methods.

Recall the standard update formula yields a mean defined by

$$\overline{z}_{n+1} = \operatorname{argmin}_{z} \left(||\Gamma^{-\frac{1}{2}}(y - Hz)||^{2} + ||(C^{f})^{-\frac{1}{2}}(z - \overline{z}_{n})||_{z}^{2} \right)$$

We propose in

M. A. Iglesias

Iterative regularization for ensemble-based data assimilation in reservoir models. *In review (http://arxiv.org/abs/1401.5375).* 2014 (Submitted to Computational Geosciences)

to modify the ensemble method

$$\boldsymbol{z}_{n+1}^{(j)} = \boldsymbol{z}_n^{(j)} + \boldsymbol{C}^{\boldsymbol{f}} \boldsymbol{H}^{\boldsymbol{T}} \left(\boldsymbol{H} \boldsymbol{C}^{\boldsymbol{f}} \boldsymbol{H}^{\boldsymbol{T}} + \boldsymbol{\alpha} \boldsymbol{\Gamma} \right)^{-1} (\boldsymbol{y}^{(j)} - \boldsymbol{H} \boldsymbol{z}_n^{(j)})$$

so that the mean is given by

$$\overline{z}_{n+1} = \operatorname{argmin}_{z} \left(||\Gamma^{-\frac{1}{2}}(y - Hz)||^{2} + \alpha ||(C^{f})^{-\frac{1}{2}}(z - \overline{z}_{n})||_{z}^{2} \right)$$

i.e. Regularizing Kalman as in Levenberg-Marquardt!! where a selection of α guided by Iterative Regularization methods. More precisely, we propose

$$\rho||\Gamma^{-1/2}(y-H\overline{z}_n)|| \le ||\Gamma^{-1/2}(y-H\overline{z}_{n+1}(\alpha))|| \le ||\Gamma^{-1/2}(y-H\overline{z}_n)||$$

where ρ is a tunable parameter in (0, 1).

(Nottingham University)

Proposition [Iglesias 2014]

$$\alpha \to ||\Gamma^{-1/2}(y - H\overline{z}_{n+1}(\alpha))||$$

is continuous and monotone nondecreasing. Moreover,

•
$$\lim_{\alpha \to 0} ||\Gamma^{-1/2}(y - H\overline{z}_{n+1}(\alpha))|| = ||\Gamma^{-1/2}(y - H\overline{z}_n)||$$

•
$$\lim_{\alpha\to\infty} ||\Gamma^{-1/2}(y - H\overline{z}_{n+1}(\alpha))|| = 0$$

Thus, there exists α such that

$$\rho||\Gamma^{-1/2}(y - H\overline{z}_n)|| \le ||\Gamma^{-1/2}(y - H\overline{z}_{n+1}(\alpha))||$$

Proposition [Iglesias 2014]

$$\alpha \to ||\Gamma^{-1/2}(y - H\overline{z}_{n+1}(\alpha))||$$

is continuous and monotone nondecreasing. Moreover,

•
$$\lim_{\alpha \to 0} ||\Gamma^{-1/2}(y - H\overline{z}_{n+1}(\alpha))|| = ||\Gamma^{-1/2}(y - H\overline{z}_n)||$$

•
$$\lim_{\alpha\to\infty} ||\Gamma^{-1/2}(y - H\overline{z}_{n+1}(\alpha))|| = 0$$

Thus, there exists α such that

$$\rho||\Gamma^{-1/2}(y - H\overline{z}_n)|| \le ||\Gamma^{-1/2}(y - H\overline{z}_{n+1}(\alpha))||$$

Stopping criteria: Discrepancy Principle

We terminate the algorithm whenever

$$||\Gamma^{-1/2}(y - H\overline{z}_n)|| \le \tau \eta ||\Gamma^{-1/2}||$$

for a prescribed value $\tau > 1/\rho$ where $\eta = ||\mathbf{y} - \mathbf{G}(\mathbf{u}^{\dagger})||$ is the noise level.

Then we can show that the selection of α is consistent with the discrepancy principle to the linear inverse problem corresponding to the analysis step.

(Nottingham University)

Bayesian inverse problems

An iterative regularizing ensemble Kalman method

Let $\rho < 1$ and $\tau > 1/\rho$. Generate an initial ensemble $u_0^{(j)} \sim \mu_0$

A regularizing Kalman method

- (1) Prediction Step: Evaluate $w_m^{(j,f)} = G(u_m^{(j)})$ define \overline{w}_m^f
- (2) Stopping criteria. If

$$||\Gamma^{-1/2}(y-\overline{w}_m^f)|| \leq \tau\eta$$

Stop. Otherwise: define C_m^{uw} , \overline{u}_m , C_m^{ww} and

(3) Analysis step: Compute the updated ensembles

$$u_{m+1}^{(j)} = u_m^{(j)} + C_m^{uw} (C_m^{ww} + \alpha_m \Gamma)^{-1} (y^{(j)} - w_m^{(j,f)})$$

for α_m such that

$$\alpha_m ||\Gamma^{1/2} (C_m^{ww} + \alpha_m \Gamma)^{-1} (y^{\eta} - \overline{w}_m^f)|| \le \rho ||\Gamma^{-1/2} (y^{\eta} - \overline{w}_m^f)||$$

Synthetic experiment with a toy (groundwater) model

Consider

- Initial ensemble generated from a prior $\mathbb{P}(u) = N(\overline{u}, C)$.
- Let G(u) be the forward operator that arises from a reservoir model.

Consider a truth $u^{\dagger} \sim \mathbb{P}(u)$ from which synthetic data are generated by $y = G(u^{\dagger}) + \eta$ $\eta \sim N(0, \Gamma)$ (prescribed Γ covariance of the Gaussian noise).

Reconstructing the truth with the mean of an ensemble of $N_e = 75$ (with small noise)

Performance

$$\overline{u}_n \equiv \frac{1}{N} \sum_{j=1}^N u_n^{(j)}$$
$$||\Gamma^{-1/2}(y - \overline{u}_n)||_{l^2} \qquad ||\overline{u}_n - u^{\dagger}||_{L^2(D)}$$

Regularization parameter α

Plot of $\log \alpha$

Convergence as the noise level decreases

(Nottingham University)

Cost approx 6000!!!

Recall the augmented analysis

$$u_{n+1}^{(j)} = u_n^{(j)} + C^{uw}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_n^{(j)}))$$

$$w_{n+1}^{(j)} = G(u_n^{(j)}) + C^{ww}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_n^{(j)}))$$

Use the second equation to do some linear iterations when ρ is large (and so is α). adhoc!!

1 nonlinear iteration every iteration Cost approx 6000!!!

1 nonlinear iteration every 5 Cost approx 1200!!!

1 nonlinear iteration every 10 Cost approx 600!!!

1 nonlinear iteration every 15 Cost approx 400!!!

1 nonlinear iteration every 20 Cost approx 300!!!

Connections with variational Iterative Regularization

Assume that at a given iteration level

$$G(u_m^{(j)}) \approx G(\overline{u}_m) + DG(\overline{u}_m)(u_m^{(j)} - \overline{u}_m)$$

The update formula becomes

 $\overline{u}_{m+1} = \overline{u}_m + C_m^{uu} DG(\overline{u}_m)^* (DG(\overline{u}_m)C_m^{uu} DG(\overline{u}_m)^* + \alpha_m \Gamma)^{-1} (y - G(\overline{u}_m))$

where

$$C_{m}^{uu} = \frac{1}{N_{e}-1} \sum_{j=1}^{N_{e}} (u_{m}^{(j,f)} - \overline{u}_{m}^{f}) (u_{m}^{(j,f)} - \overline{u}_{m}^{f})^{T}$$

Connections with variational Iterative Regularization

Assume that at a given iteration level

$$G(u_m^{(j)}) \approx G(\overline{u}_m) + DG(\overline{u}_m)(u_m^{(j)} - \overline{u}_m)$$

The update formula becomes

 $\overline{u}_{m+1} = \overline{u}_m + C_m^{uu} DG(\overline{u}_m)^* (DG(\overline{u}_m) C_m^{uu} DG(\overline{u}_m)^* + \alpha_m \Gamma)^{-1} (y - G(\overline{u}_m))$

where

$$C_{m}^{uu} = \frac{1}{N_{e}-1} \sum_{j=1}^{N_{e}} (u_{m}^{(j,f)} - \overline{u}_{m}^{f}) (u_{m}^{(j,f)} - \overline{u}_{m}^{f})^{T}$$

If we replace C_m^{uu} by the prior error covariance C, then

$$\overline{u}_{m+1} = \overline{u}_m + CDG(\overline{u}_m)^* (DG(\overline{u}_m)CDG(\overline{u}_m)^* + \alpha_m \Gamma)^{-1} (y - G(\overline{u}_m))$$

This is Levenberg-Marquardt applied for the minimization

$$u = \arg\min_{u \in X} ||\Gamma^{-1/2}(y - G(u))||^2 \rightarrow \min$$

in X with norm $||C^{-1/2} \cdot ||_X$. (No regularization term!!!!)

The regularizing LM

Selecting α_m and the stopping criteria according to the discrepancy principle yields the regularizing Levenberg-Marquardt of [Hanke, 1997]:

Theorem [Hanke 1997]

 \overline{u}_m converges after a finite number of iterations and

 $\overline{u}_m
ightarrow u$ as $\eta
ightarrow 0$ (where $G(u) = G(u^\dagger)$)

The regularizing LM scheme for reservoir modeling applications

M. A. Iglesias

Iterative regularization for ensemble-based data assimilation in reservoir models. *In review (http://arxiv.org/abs/1401.5375).* 2014

M. A. Iglesias and C. Dawson

The regularizing Levenberg-Marquardt scheme for history matching of petroleum reservoirs, *Computational Geosciences*, (2013) 17:1033-1053

The proposed ES as an approximate regularizing LM scheme

Comparing ES with the regularizing LM scheme (on the same subspace)

Ensemble Kalman method for geometric inverse problems

Suppose we are interested in recovering something like:

We parametrize the permeability in terms of a level set function *u*. i.e.

$$K(u) = K_i \mathbb{1}_{u < 0} + K_e \mathbb{1}_{u \ge 0}$$

p = G(u) is, as before, the solution to $-\nabla \cdot K(u)\nabla p = f$ evaluated at some locations. We invert noisy measurements: $y = G(u) + \xi$

(Nottingham University)

Ensemble Kalman method for geometric inverse problems

Let us consider an artificial prior (for the initial ensemble)

 $\mu_0 = N(0, C)$

with some covariance that reflects the regularity of the shape.

$$K(u) = K_i \mathbb{1}_{u < 0} + K_e \mathbb{1}_{u \ge 0}$$

(Nottingham University)

Ensemble Kalman method for geometric inverse problems

Summary

- Iterative regularization provides strategies for regularizing Kalman based methods.
- Regularization has strong effect in the robustness and accuracy of ensemble methods for solving both classical and Bayesian inverse problems.
- Further investigations are required to establish the mathematical properties of these approximations.

References

M

M. A. Iglesias

Iterative regularization for ensemble-based data assimilation in reservoir models. *In review (http://arxiv.org/abs/1401.5375).* 2014

M. Iglesias, K. Law and A.M. Stuart,

Ensemble Kalman methods for inverse problems. *Inverse Problems*. 29 (2013) 045001 http://arxiv.org/abs/1209.2736

M. A. Iglesias and C. Dawson

The regularizing Levenberg-Marquardt scheme for history matching of petroleum reservoirs, *Computational Geosciences*, (2013) 17:1033-1053