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Nonlinear ill-posed inverse problems

The forward map

Let G : X → Y be the forward (parameter-to-observations) map that arises
from PDE-constrained problem where u is an unknown parameter (or
property)

u −→ G(u)

( G nonlinear, compact, sequentially weakly closed operator between
separable Hilbert spaces X and Y .)

Example: steady Darcy flow

−∇ · eu∇p = f in D,
−eu∇p · n = BN in ΓN .

p = BD in ΓD
where ∂D = ΓN ∪ ΓD.

u = log(K ) ∈ L∞(D) −→ G(u) = {p(xi )}N
i=1 ∈ RM
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Nonlinear ill-posed inverse problems

The data and the noise level

Let u† be the “truth”, i.e. G(u†) are the exact (noise-free) observations.
Assume that we are given data

y = G(u†) + ξ†

where ξ† is noise and we are given a noise level η such that

||y −G(u†)|| ≤ η

The inverse problem

Given y and η find approximate solutions u to G(u†) = G(u).

Ill-posedness (Hadamard)

Existence

Uniqueness

Continuity with respect to the data y
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Nonlinear ill-posed inverse problems

Lack of continuity (lack of stability) with respect to the data
We can construct a sequence un ∈ X such that

un 9 u but G(un)→ G(u)

If we want to compute with standard optimization

u = arg min
u∈X
||y −G(u)||2 → min

we may observe semiconvergence behavior [Kirsch, 1996]

Regularization

Construct an approximation uη that is stable, i.e. such that

uη → u as η → 0
where

G(u) = G(u†)
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Regularization

Regularization Approaches (for nonlinear operators)
Regularize-then-compute (e.g. Tikhonov, TSVD)
Compute while regularizing (Iterative Regularization)
[Kaltenbacher, 2010]

I regularizing Levenberg-Marquardt
I Landweber iteration
I truncated Newton-CG
I iterative regularized Gauss-Newton method

Aim of this work:
Apply ideas from Iterative Regularization to develop ensemble Kalman
methods as derivative-free tools for solving nonlinear ill-posed inverse
problem in a general abstract framework.
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PDE-constrained Inverse Problems

The Classical (deterministic) Inverse Problem
Given data y ∈ Y find

u = arg min
u∈X
||y −G(u)||2 → min

Consider µ0(u) = P(u) the prior on u and

y = G(u) + ξ, ξ ∼ N (0, Γ)

The Bayesian Inverse Problem
Characterize the posterior µy (u) = P(u|y):

dµy

dµ0
(u) ∝ exp

(
− Φ(u; y)

)

where
Φ(u; y) =

1
2
||Γ−1/2(y −G(u))||2
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Overview of this work

Classical 
(deterministic) 

Inversion 

Bayesian 
 Inversion 

Least-squares 
Characterize the posterior 

Bayesian Approach

Prior information concerning geologic properties:

µ0(u) = P(u)

Noisy measurements:

y = G(u) + ⌘, ⌘ ⇠ N (0, �)

Define negative log likelihood

�(u; y) =
1
2
||��1/2(y � G(u))||2

Posterior µy (u) = P(u|y):

dµy

dµ0
(u) / exp

⇣
� �(u; y)

⌘
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Iterative 
 Regularization 
(e.g. regularizing LM, 
landweber iteration). 

Ensemble Kalman-based methods 
Enemble Kalman Methods for Inverse Problems

u(j,a) = u(j,f ) + K(y (j) � G(u(j,f )))

Augmented analysis

u(j,a) = u(j,f ) + Cuw (Cww + �)�1(y (j) � G(u(j,f )))

w (j,a) = G(u(j,f )) + Cww (Cww + �)�1(y (j) � G(u(j,f )))

z(j,a) = z(j,f ) + Cf HT
⇣

HCf HT + �
⌘�1

(y (j) � Hz(j,f ))

where

z = (u, w)T 2 Z ⌘ X ⇥ Y H = (0, I) Cf =

✓
Cuu Cuw

(Cuw )T Cww

◆

It is easy to show that

za =
1

Ne

NeX

j=1

z(j,a) = argminz

⇣
||�� 1

2 (y � Hz)||2Y + ||(Cf )�
1
2 (z � zf )||2Z

⌘

where zf ⌘ 1
Ne

PNe
j=1 z(j,f ). Tikhonov-regularized linear inverse

problems.
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Reference
Iterative Regularization for Data Assimilation in Petroleum Reservoirs
Multiscale Inverse Problems Workshop, Warwick University, June 17-19, 2013.
http://www2.warwick.ac.uk/fac/sci/maths/research/events/2012-2013/nonsymp/mip/schedule/
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Iterative ensemble Kalman “Smoother”
Assume that the data y = G(u†) + ξ with ξ ∼ N(0, Γ).

Consider an initial ensemble u(1)
0 , . . . ,u(Ne)

0 .

Prediction u(j)
n → G(u(j)

n )

un =
1

Ne

Ne∑

j=1

u(j)
n , wn =

1
Ne

Ne∑

j=1

G(u(j)
n )

Cww =
1

Ne − 1

Ne∑

j=1

(G(u(j)
n )− wn)(G(u(j)

n )− wn)T ,

Cuw =
1

Ne − 1

Ne∑

j=1

(u(j)
n − un)(G(u(j)

n )− wn)T

Analysis u(j)
n → u(j)

n+1

u(j)
n+1 = u(j)

n + Cuw (Cww + Γ)−1(y (j) −G(u(j)
n )), y (j) = y + η(j)
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Ensemble Kalman Methods for Inverse Problems

Augmented analysis

u(j)
n+1 = u(j)

n + Cuw (Cww + Γ)−1(y (j) −G(u(j)
n ))

w (j)
n+1 = G(u(j)

n ) + Cww (Cww + Γ)−1(y (j) −G(u(j)
n ))

z(j)
n+1 = z(j)

n + C f HT
(

HC f HT + Γ
)−1

(y (j) − Hz(j)
n )

where

z = (u,w)T ∈ Z ≡ X × Y H = (0, I) C f =

(
Cuu Cuw

(Cuw )T Cww

)

Kalman as a Tikhonov-regularized linear inverse problems

zn+1 =
1

Ne

Ne∑

j=1

z(j)
n+1 = argminz

(
||Γ− 1

2 (y − Hz)||2 + ||(C f )−
1
2 (z − zn)||2Z

)

where zn ≡ 1
Ne

∑Ne
j=1 z(j)

n .
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Ensemble Kalman Methods for Inverse Problems

Kalman as a Tikhonov-regularized linear inverse problems

zn+1 = argminz

(
||Γ− 1

2 (y − Hz)||2 + ||(C f )−
1
2 (z − zn)||2Z

)

In summary, this iterative method is solving a sequence of linear inverse
problems: Given y , find z such that

y = Hz

Preliminary work on Kalman methods for inverse problems
M. Iglesias, K. Law and A.M. Stuart,

Ensemble Kalman methods for inverse problems. Inverse Problems. 29 (2013) 045001
http://arxiv.org/abs/1209.2736
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Ensemble Kalman Methods for Inverse Problems

This algorithm can be formulated in a general abstract framework on
Hilbert spaces.

No localization/inflation/truncation of any type was considered. The main
focus was the initial ensemble.

We consider both initial ensemble sample from the prior but also the first
elements of a basis.

Invariance subspace property A = span{u(j)
0 }Ne

j=1.

Theorem (Iglesias, Law, Stuart)

u(j)
n ∈ A for all (n, j) ∈ N× {1, · · · ,Ne}.

Even though the problem is defined on a compact subspace A, we
found that further regularization is needed.
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Synthetic experiment with a toy (groundwater) model

Consider

Initial ensemble generated from a prior P(u) = N(u,C).

Let G(u) be the forward operator that arises from a reservoir model.
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Measurement locations

Consider a truth u† ∼ P(u) from which synthetic data are generated by
y = G(u†) + η η ∼ N(0, Γ) (prescribed Γ covariance of the Gaussian
noise).
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Reconstructing the truth with the mean of an ensemble of Ne = 75
(with small noise)
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Performance

un ≡
1
N

N∑

j=1

u(j)
n

||Γ−1/2(y − un)||l2 ||un − u†||L2(D)

Data misfit Error w.r.t truth
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Recall the standard update formula yields a mean defined by

zn+1 = argminz

(
||Γ− 1

2 (y − Hz)||2 + ||(C f )−
1
2 (z − zn)||2Z

)

We propose in

M. A. Iglesias

Iterative regularization for ensemble-based data assimilation in reservoir models.
In review (http://arxiv.org/abs/1401.5375). 2014 (Submitted to Computational Geosciences)

to modify the ensemble method

z(j)
n+1 = z(j)

n + C f HT
(

HC f HT + αΓ
)−1

(y (j) − Hz(j)
n )

so that the mean is given by

zn+1 = argminz

(
||Γ− 1

2 (y − Hz)||2 + α||(C f )−
1
2 (z − zn)||2Z

)

i.e. Regularizing Kalman as in Levenberg-Marquardt!! where a selection of α
guided by Iterative Regularization methods. More precisely, we propose

ρ||Γ−1/2(y − Hzn)|| ≤ ||Γ−1/2(y − Hzn+1(α))|| ≤ ||Γ−1/2(y − Hzn)||
where ρ is a tunable parameter in (0,1).
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Proposition [Iglesias 2014]

α→ ||Γ−1/2(y − Hzn+1(α))||
is continuous and monotone nondecreasing. Moreover,

limα→0 ||Γ−1/2(y − Hzn+1(α))|| = ||Γ−1/2(y − Hzn)||
limα→∞ ||Γ−1/2(y − Hzn+1(α))|| = 0

Thus, there exists α such that

ρ||Γ−1/2(y − Hzn)|| ≤ ||Γ−1/2(y − Hzn+1(α))||

Stopping criteria: Discrepancy Principle

We terminate the algorithm whenever

||Γ−1/2(y − Hzn)|| ≤ τη||Γ−1/2||

for a prescribed value τ > 1/ρ where η = ||y −G(u†)|| is the noise level.

Then we can show that the selection of α is consistent with the discrepancy
principle to the linear inverse problem corresponding to the analysis step.

(Nottingham University) Bayesian inverse problems Marco Iglesias 17 / 50



Proposition [Iglesias 2014]

α→ ||Γ−1/2(y − Hzn+1(α))||
is continuous and monotone nondecreasing. Moreover,

limα→0 ||Γ−1/2(y − Hzn+1(α))|| = ||Γ−1/2(y − Hzn)||
limα→∞ ||Γ−1/2(y − Hzn+1(α))|| = 0

Thus, there exists α such that

ρ||Γ−1/2(y − Hzn)|| ≤ ||Γ−1/2(y − Hzn+1(α))||

Stopping criteria: Discrepancy Principle

We terminate the algorithm whenever

||Γ−1/2(y − Hzn)|| ≤ τη||Γ−1/2||

for a prescribed value τ > 1/ρ where η = ||y −G(u†)|| is the noise level.

Then we can show that the selection of α is consistent with the discrepancy
principle to the linear inverse problem corresponding to the analysis step.

(Nottingham University) Bayesian inverse problems Marco Iglesias 17 / 50



An iterative regularizing ensemble Kalman method

Let ρ < 1 and τ > 1/ρ. Generate an initial ensemble u(j)
0 ∼ µ0

A regularizing Kalman method

(1) Prediction Step: Evaluate w (j,f )
m = G(u(j)

m ) define w f
m

(2) Stopping criteria. If

||Γ−1/2(y − w f
m)|| ≤ τη

Stop. Otherwise: define Cuw
m , um, Cww

m and
(3) Analysis step: Compute the updated ensembles

u(j)
m+1 = u(j)

m + Cuw
m (Cww

m + αmΓ)−1(y (j) − w (j,f )
m )

for αm such that

αm||Γ1/2(Cww
m + αmΓ)−1(yη − w f

m)|| ≤ ρ||Γ−1/2(yη − w f
m)||
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Synthetic experiment with a toy (groundwater) model

Consider

Initial ensemble generated from a prior P(u) = N(u,C).

Let G(u) be the forward operator that arises from a reservoir model.
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Measurement locations

Consider a truth u† ∼ P(u) from which synthetic data are generated by
y = G(u†) + η η ∼ N(0, Γ) (prescribed Γ covariance of the Gaussian
noise).
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Reconstructing the truth with the mean of an ensemble of Ne = 75
(with small noise)
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Performance

un ≡
1
N

N∑

j=1

u(j)
n

||Γ−1/2(y − un)||l2 ||un − u†||L2(D)

Data misfit Error w.r.t truth
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Regularizing properties as a function of ρ
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Regularizing properties as a function of ρ
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Regularizing properties as a function of ρ
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Regularizing properties as a function of ρ
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Regularizing properties as a function of ρ
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Regularizing properties as a function of ρ
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Regularizing properties as a function of ρ
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Regularization parameter α

Plot of logα
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Regularizing properties as a function of the ensemble size
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Regularizing properties as a function of the ensemble size
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Regularizing properties as a function of the ensemble size
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Regularizing properties as a function of the ensemble size
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Regularizing properties as a function of the ensemble size
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Regularizing properties as a function of the ensemble size
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Convergence as the noise level decreases

un ≡
1
N

N∑

j=1

u(j)
n

||Γ−1/2(y − un)||l2 ||un − u†||L2(D)
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Computational cost

Cost approx 6000!!!

0 20 40 60

1

2

3

4

5

6

iteration

lo
g
−

d
a
ta

 m
is

fi
t

N
e
=100,  ρ =0.9

0 20 40 60

0.6

0.7

0.8

0.9

1

iteration

re
la

ti
v
e
 e

rr
o
r

N
e
=100,  ρ =0.9

(Nottingham University) Bayesian inverse problems Marco Iglesias 37 / 50



Accelerating EnKF

Recall the augmented analysis

u(j)
n+1 = u(j)

n + Cuw (Cww + Γ)−1(y (j) −G(u(j)
n ))

w (j)
n+1 = G(u(j)

n ) + Cww (Cww + Γ)−1(y (j) −G(u(j)
n ))

Use the second equation to do some linear iterations when ρ is large
(and so is α). adhoc!!
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Computational cost

1 nonlinear iteration every iteration
Cost approx 6000!!!
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Computational cost

1 nonlinear iteration every 5
Cost approx 1200!!!
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Computational cost

1 nonlinear iteration every 10
Cost approx 600!!!
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Computational cost

1 nonlinear iteration every 15
Cost approx 400!!!
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Computational cost

1 nonlinear iteration every 20
Cost approx 300!!!
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Connections with variational Iterative Regularization

Assume that at a given iteration level

G(u(j)
m ) ≈ G(um) + DG(um)(u(j)

m − um)

The update formula becomes

um+1 = um + Cuu
m DG(um)∗(DG(um)Cuu

m DG(um)∗ + αmΓ)−1(y −G(um))

where

Cuu
m =

1
Ne − 1

Ne∑

j=1

(u(j,f )
m − uf

m)(u(j,f )
m − uf

m)T

If we replace Cuu
m by the prior error covariance C, then

um+1 = um + CDG(um)∗(DG(um)CDG(um)∗ + αmΓ)−1(y −G(um))

This is Levenberg-Marquardt applied for the minimization

u = arg min
u∈X
||Γ−1/2(y −G(u))||2 → min

in X with norm ||C−1/2 · ||X . (No regularization term!!!!)
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The regularizing LM

Selecting αm and the stopping criteria according to the discrepancy
principle yields the regularizing Levenberg-Marquardt of [Hanke, 1997]:

Theorem [Hanke 1997]
um converges after a finite number of iterations and

um → u as η → 0 (where G(u) = G(u†))

The regularizing LM scheme for reservoir modeling applications

M. A. Iglesias
Iterative regularization for ensemble-based data assimilation in reservoir models.
In review (http://arxiv.org/abs/1401.5375). 2014

M. A. Iglesias and C. Dawson
The regularizing Levenberg-Marquardt scheme for history matching of petroleum
reservoirs, Computational Geosciences, (2013) 17:1033-1053
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The proposed ES as an approximate regularizing LM scheme

Comparing ES with the regularizing LM scheme (on the same
subspace)
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Ensemble Kalman method for geometric inverse problems
Suppose we are interested in recovering something like:
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We parametrize the permeability in terms of a level set function u. i.e.

K (u) = Ki1u<0 + Ke1u≥0

p = G(u) is, as before, the solution to −∇ · K (u)∇p = f evaluated at
some locations. We invert noisy measurements: y = G(u) + ξ

(Nottingham University) Bayesian inverse problems Marco Iglesias 47 / 50



Ensemble Kalman method for geometric inverse problems
Let us consider an artificial prior (for the initial ensemble)

µ0 = N(0,C)

with some covariance that reflects the regularity of the shape.

K (u) = Ki1u<0 + Ke1u≥0
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Ensemble Kalman method for geometric inverse problems
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Summary

Iterative regularization provides strategies for regularizing Kalman based
methods.

Regularization has strong effect in the robustness and accuracy of
ensemble methods for solving both classical and Bayesian inverse
problems.

Further investigations are required to establish the mathematical
properties of these approximations.
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