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Randomized Maximum Likelihood (RML)
(Simultaneous estimation, Iterative updates)

Ensemble Smoother (ES)
(Sim. est., A single update)

Ensemble Smoother with Multiple Data Assimilations (ESMDA)
(Sim. est., Multiple upd. with inflated data covariance)

Half-iteration Ensemble Kalman Filter (HIEnKF)
(Sequential est., A single upd.)

Half-iteration Ensemble Kalman Filter with MDA (HIEnKFMDA)
(Seq. est., Multiple upd. with inflated data covariance)
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Motivation

Methods are equivalent for gauss-linear problems
Methods behave differently for non-linear problems

RML is iterative, ES is purely non-iterative, while ESMDA,
HIEnKF and HIEnKFMDA ‘lie somewhere in between’

Systematic differences for weakly non-linear problems?
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Investigation

Compare methods on simplistic, weakly non-linear parameter
estimation problem

Focus on differences in data handling — remove other differences

Asymptotic calculations (additional assumptions) to first order in
non-linearity strength

Numerical calculations with full methods and relaxed assumptions
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Simplistic Weakly Non-linear Parameter Estimation Problem

Estimate x from d, where

d=(di...dp)",
di = yi (Xef) + €i; € ~ N(0,0%?),

yi(x) = M cimxttimi | nim| ‘ot too big’
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Focus on Diff. in Data Handling — Remove Other Diff.

Equip ES (and ESMDA, HIEnKF, HIEnKFMDA) with local gains
Kalman gain (global) K = Gy (G, + Cg)*
Replace C,, by CXGET and C,, by GeCXGeT

— Local gains K. = GG/ (GeCXGeT + Cd)_1
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| consider the updates of a single (arbitrary) ensemble member

Assumptions

Univariate x  —  yi(x) = x't"

Negligible data error  —  d; = y; (Xef),
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Additional Assumptions ... (continued)

So far | assume
[n1| A |m2| ‘not too big’ m=m=n, |n<K1
y1 (x) y(x),y(x)
7] P 7] IR
d; ______________ s ()
;(ref ;ref
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xpuML = d — (dInd)n + O(n?)

Define
Apethod =  [Xmethod — XRML|
Q = |d(Ind — Inxprior) — (d — Xprior)|
Ags = Qn+ O(n?)
Apsvpa = A71Qn+ O(n?)
Apipnkr = D1Qn+ O(n?)
ApEnkrMpas = (AD)1Qn+ O(n?)



Results from Asymptotic Calculations to O(n)

Aps = Qn

AgpsMpA  ~ A7t Qn
ApiEnkr =~ D~'@Qn
Aumsnkrvpa =~ (AD)'Qn

dES

dHIENKF
dESMDA2
dESMDA4
dHIENKFMDA2
dHIENKFMDA4

N\
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Numerical Results with Full Methods

—dES

dHIENKF
dESMDA2
dESMDA4
dHIENKFMDA2
dHIENKFMDA4

‘Ranking’ stable for n € [-0.5, 5]
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Num. Calc. with Full Methods and Relaxed Assumptions

di = yi (xrer) + €i; € ~ N(0,0?),

yi(x) = SSM_ gipxbtnm. R =0.4

M=1,25. Draw 300 realizations of Xref, Xprior: Nim: Cim
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M = 2, Arbitrary realization

M = 2, Mean
dES dES
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M =5, Arbitrary realization M =5, Mean

dES dES.

—— dHIENKF —— dHIENKF

—— dESMDA2 dESMDA2

—— dESMDA4 ——— dESMDA4

— dHIENKFMDA2 AHIENKFMDA2
dHIENKFMDA dHIENKFMDA4
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Summary

Compared five different ways to assimilate data on simplistic,
weakly non-linear parameter estimation problem

Asymptotic calculations to first order in non-linearity strength
(relying on further simplifications) reveals nature of similarity with
iterative methods for (local-gain) ESMDA, HIEnKF and
HIEnKFMDA methods

Numerical results with full (local-gain) methods and relaxed
assumptions support asymptotic calculations for low values of M



