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Methods

Randomized Maximum Likelihood (RML)
(Simultaneous estimation, Iterative updates)

Ensemble Smoother (ES)
(Sim. est., A single update)

Ensemble Smoother with Multiple Data Assimilations (ESMDA)
(Sim. est., Multiple upd. with inflated data covariance)

Half-iteration Ensemble Kalman Filter (HIEnKF)
(Sequential est., A single upd.)

Half-iteration Ensemble Kalman Filter with MDA (HIEnKFMDA)
(Seq. est., Multiple upd. with inflated data covariance)
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Motivation

Methods are equivalent for gauss-linear problems

Methods behave differently for non-linear problems

RML is iterative, ES is purely non-iterative, while ESMDA,
HIEnKF and HIEnKFMDA ‘lie somewhere in between’

Systematic differences for weakly non-linear problems?
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Investigation

Compare methods on simplistic, weakly non-linear parameter
estimation problem

Focus on differences in data handling – remove other differences

Asymptotic calculations (additional assumptions) to first order in
non-linearity strength

Numerical calculations with full methods and relaxed assumptions
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Simplistic Weakly Non-linear Parameter Estimation Problem

Estimate x from d , where

d = (d1 . . . dD)T ,

di = yi (xref ) + εi ; εi ∼ N(0, σ2i ),

yi (x) =
∑M

m=1 cimx
1+nim
m ; |nim| ‘not too big’
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Focus on Diff. in Data Handling – Remove Other Diff.

Equip ES (and ESMDA, HIEnKF, HIEnKFMDA) with local gains

Kalman gain (global) K = Cxy (Cyy + Cd)−1

Replace Cxy by CxG
T
e and Cyy by GeCxG

T
e

→ Local gains Ke = CxG
T
e

(
GeCxG

T
e + Cd

)−1
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Additional Assumptions facilitating Asymptotic Calculations

I consider the updates of a single (arbitrary) ensemble member

Assumptions

Univariate x → yi (x) = x1+ni

Negligible data error → di = yi (xref ),
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Additional Assumptions . . . (continued)

So far I assume

|n1| ∧ |n2| ‘not too big’ n1 = n2 = n, |n| � 1

xref

d1

d2

y1 (x)

y2 (x)

xref

d, d

y (x) , y (x)
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Results from Asymptotic Calculations to O(n)

xRML = d − (d ln d)n +O(n2)

Define

∆method = |xmethod − xRML|
Q = |d(ln d − ln xprior)− (d − xprior)|

∆ES = Qn +O(n2)

∆ESMDA = A−1Qn +O(n2)

∆HIEnKF = D−1Qn +O(n2)

∆HIEnKFMDA = (AD)−1Qn +O(n2)
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Results from Asymptotic Calculations to O(n)

∆ES ≈ Qn

∆ESMDA ≈ A−1Qn

∆HIEnKF ≈ D−1Qn

∆HIEnKFMDA ≈ (AD)−1Qn
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Numerical Results with Full Methods
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Num. Calc. with Full Methods and Relaxed Assumptions

d = (d1 . . . dD)T ,

di = yi (xref ) + εi ; εi ∼ N(0, σ2i ),

yi (x) =
∑M

m=1 cimx
1+nim
m ; n̄im = 0.4

M = 1, 2, 5. Draw 300 realizations of xref , xprior , nim, cim
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M = 1, Arbitrary realization
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M = 2, Arbitrary realization
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M = 5, Arbitrary realization
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Summary

Compared five different ways to assimilate data on simplistic,
weakly non-linear parameter estimation problem

Asymptotic calculations to first order in non-linearity strength
(relying on further simplifications) reveals nature of similarity with

iterative methods for (local-gain) ESMDA, HIEnKF and
HIEnKFMDA methods

Numerical results with full (local-gain) methods and relaxed
assumptions support asymptotic calculations for low values of M
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