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Introduction 

Ensemble of NATL0.25+BGC simulations (Beal et al., 2010), Gulf Stream station 
(47W/ 40N). chlorophyll (CHL) / detritus (DET). 
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Introduction 
�  The analysis step of the serial EnKF can be decomposed 

in 2 successive operations (Anderson, 2003): 
◦  Correction of observed variable z: 

◦  Corrections of unobserved variables x and y: 

δz =
Var(z)

Var(z) + Var(zo)
(zo − z);

δx =
Cov(x, z)

Var(z)
δz, δy =

Cov(y, z)

Var(z)
δz.
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Gaussian distribution 
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Weakly non-Gaussian distribution 
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Strongly non-Gaussian distribution 
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Introduction 
transform sampling 

Parametric EnKF (includes ETKF) 
Truncated-Gaussian 
EnKF (1) 

Semi-parametric EnKF with Gaussian 
anamorphosis (2) 

Non-parametric ETPF (4) Particle filters (3) 

(1)  Lauvernet et al (2009) 
(2) Holm et al (2002), Bertino et al (2003); Simon and Bertino (2009); Béal et 

al (2010); Brankart et al (2012) 
(3) Gordon et al (1993); Van Leeuwen et al (2009, 2010), Snyder et al (2008) 
(4)  Reich (2013) 



EnKF with Gaussian anamorphosis 
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EnKF with Gaussian anamorphosis 



The Rank Histogram Filter 
(Anderson, 2010) 
�  The serial EnKF analysis is the parametric, Gaussian 

implementation of the sequential realization method 
(Tarantola, 2005, Section 2.3.3). Here with 3 variables: 

p(x, y, z|zo) = p(z|zo)p(x|z, zo)p(y|x, z, zo).

δz =
Var(z)

Var(z) + Var(zo)
(zo − z);

δx =
Cov(x, z)

Var(z)
δz, δy =

Cov(y, z)

Var(z)
δz.



The Rank Histogram Filter 
(Anderson, 2010) 
�  The serial EnKF analysis is the parametric, Gaussian 

implementation of the sequential realization method 
(Tarantola, 2005, Section 2.3.3). Here with 3 variables: 

�  Anderson (2010) replaces the linear update for z with 
an implementation of Bayes’ rule, 

 
 based on rank histograms. 

p(x, y, z|zo) = p(z|zo)p(x|z, zo)p(y|x, z, zo).

p(z|zo) = p(z)p(zo|z),



The Rank Histogram Filter 
(Anderson, 2010) 

p(z) (mass=1/(N + 1) between 2 consecutive particles) 



The Rank Histogram Filter 
(Anderson, 2010) 

p(zo|z)



The Rank Histogram Filter 
(Anderson, 2010) 

p(z|zo) point-wise product of the previous 2. The analysis 
z values are sampled by inversion of CDF. 



The Rank Histogram Filter 
(Anderson, 2010) 
�  And unobserved variables are corrected using linear 

regressions, as in the EnKF. 



The Rank Histogram Filter 
(Anderson, 2010) 



The Rank Histogram Filter 
(Anderson, 2010) 
�  Fully non-Gaussian method… 
� Robust… 
� … for observed variables 



Basic idea of the Multivariate Rank 
Histogram Filter 

p(x, z|zo) = p(z|zo)p(x|z, zo)

For 2 variables x and z,  z is observed by zo. 
 
Knothe-Rosenblatt rearrangement of the joint pdf 

è Sequential computation for z and x (as in the EnKF). 



The Multivariate Rank Histogram Filter 

Background ensemble in X － Z plane. 
Red dotted line: Z obs. Red square: truth. 



The Multivariate Rank Histogram Filter 

Background Z ensemble for RHF analysis. 



The Multivariate Rank Histogram Filter 

RHF analysis ensemble on Z line. 



The Multivariate Rank Histogram Filter 

For each particle i, an analyzed value for X must be calculated. 



The Multivariate Rank Histogram Filter 

To form p(X|Z = Zi
a), select particles in the background ensemble. X 

analysis could be randomly drawn from p(X|Z = Zi
a). 



The Multivariate Rank Histogram Filter 

Instead, we select particles to estimate p(X|Z = Zi
b). 



The Multivariate Rank Histogram Filter 

The marginal CDF of X |Z = Zi
b and X |Z = Zi

a are formed. 



The Multivariate Rank Histogram Filter 

The analysis value for X is obtained by preserving the particle 
position in the marginal CDFs. 



The Multivariate Rank Histogram Filter 

This is done for each particle.  



The Multivariate Rank Histogram Filter 

Analysis ensemble. 



The Multivariate Rank Histogram Filter 

With 3 variables: 

p(x, y, z|zo) = p(z|zo)p(x|z, zo)p(y|x, z, zo)

To sample p(x|z=za
i), particles are selected based on 

their distance to za
i along z axis.  

To sample p(y|x=xa
i, z=za

i), particles are selected based 
on their distance to (xa

i, za
i) in the (x,z) plane.  

 
 



Analysis illustration 

NATL0.25+BGC 
 
Observed: CHL 
 
Unobserved: MLD 
and DET 
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NATL0.25+BGC 
 
Observed: CHL 
 
Unobserved: MLD 
and DET 
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Experiments with Lorenz 63 system 

� Experiment 1: 
◦ X, Y, Z observed (error std=2); 
◦ Analysis every 10 (weakly), 25 (moderately), 

and 50 (strongly nonlinear case) time steps. 

� Experiment 2: 
◦ Only Z observed (error std=1); 
◦ Analysis every 40 time steps. 
 



Experiments with Lorenz 63 system 

� 105 analysis steps; 
� Diagnostics: RMS error and Kullback-

Leibler divergence (ref: large ensemble 
SIR filter). 
 



L63, XYZ observed, dt=10 
RMS error 



L63, XYZ observed, dt=25 
RMS error 



L63, XYZ observed, dt=50 
RMS error 



L63, XYZ observed, dt=10 
Kullback-Leibler divergence 



L63, XYZ observed, dt=25 
Kullback-Leibler divergence 



L63, XYZ observed, dt=50 
Kullback-Leibler divergence 



L63, only Z observed 



L63, only Z observed 



L63, only Z observed 
Analyses at cycle 364 



L63, only Z observed 
RMS error 



L63, only Z observed 
Kullback-Leibler divergence 



Limitation 

�  In its original form, the MRHF is subject 
to the curse of dimensionality!! 

 



The Multivariate Rank Histogram Filter 

Background ensemble in X － Z plane. 
Red dotted line: Z obs. Red square: truth. 



Limitation 

�  In its original form, the MRHF is subject 
to the curse of dimensionality!! 

� Need for the mean-field approximation: 

 p(x, y, z|z
o) = p(z|zo)p(x|z, zo)p(y|x, z, zo)



Limitation 

�  In its original form, the MRHF is subject 
to the curse of dimensionality!! 

� Need for the mean-field approximation; 
� Extremely expensive in the present form 

(work in progress) 

 



Last remarks 

� The MRHF is one implementation of 
EnDA based on Optimal transport theory 
(see S. Reich’s papers) 

� The MRHF follows the logic of the 
stochastic EnKF (coupling possible) 

� Easy localization of the analysis 
�  Smoothing straightforward 
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Truncated-Gaussian 
EnKF (1) 

Semi-parametric EnKF with Gaussian 
anamorphosis (2) 

Non-parametric ETPF(4) 
MRHF (5) 

Particle filters (3) 

(1)  Lauvernet et al (2009) 
(2) Holm et al (2002), Bertino et al (2003); Simon and Bertino (2009); Béal et 

al (2010); Brankart et al (2012) 
(3) Gordon et al (1993); Van Leeuwen et al (2009, 2010), Snyder et al (2008) 
(4)  Reich (2013) 
(5) Metref et al (in revision) 
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Local least square fit 
(Anderson, 2003) 


