
Ensemble
Kalman

filtering with
residual
nudging

Xiaodong Luo
(IRIS), and

Ibrahim Hoteit
(KAUST)

Introduction

Residual
nudging with
linear
observations

Residual
nudging with
nonlinear
observations

Future plan

References

Ensemble Kalman filtering with residual
nudging

– some recent results

Xiaodong Luo (IRIS), and Ibrahim Hoteit (KAUST)

29 May 2013

1 / 32



Ensemble
Kalman

filtering with
residual
nudging

Xiaodong Luo
(IRIS), and

Ibrahim Hoteit
(KAUST)

Introduction
Problem statement

Residual nudging

Residual
nudging with
linear
observations

Residual
nudging with
nonlinear
observations

Future plan

References

Outline

1 Introduction

Problem statement

Residual nudging

2 Residual nudging with linear observations

3 Residual nudging with nonlinear observations

4 Future plan

2 / 32



Ensemble
Kalman

filtering with
residual
nudging

Xiaodong Luo
(IRIS), and

Ibrahim Hoteit
(KAUST)

Introduction
Problem statement

Residual nudging

Residual
nudging with
linear
observations

Residual
nudging with
nonlinear
observations

Future plan

References

Problem statement (1/2)

Systems

Consider the state / parameter estimation problem in the
following system

xk =Mk,k−1(xk−1) + uk ,

yk = Hk(xk) + vk ,
(1)

with

3 / 32

x ∈ Rm → m-dimensional model state / parameter;
y ∈ Rp → p-dimensional observation;
M→ state / parameter transition operator;
H → observation operator;
u→ model error;
v→ observational error;
u and v are independent;
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Problem statement (2/2)

The time indices k are often dropped later on since we
confine ourselves to the update (filtering) step of a filter.

Assumptions

E(v) = 0 and E(vvT) = R;
R is non-singular and there exists a non-singular matrix
R1/2 such that R = R1/2 RT/2;
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Residual nudging (1/3)

Additional notations

The measured observation (data) ytr is decomposed as
ytr = H(xtr) + vtr, with xtr being the truth, and vtr the
corresponding realization of the observational error;

The residual r with respect to x is given by
r ≡ H(x)− ytr;
The residual norm ‖r‖R ≡

√
rT R−1 r;

5 / 32



Ensemble
Kalman

filtering with
residual
nudging

Xiaodong Luo
(IRIS), and

Ibrahim Hoteit
(KAUST)

Introduction
Problem statement

Residual nudging

Residual
nudging with
linear
observations

Residual
nudging with
nonlinear
observations

Future plan

References

Residual nudging (1/3)

Additional notations

The measured observation (data) ytr is decomposed as
ytr = H(xtr) + vtr, with xtr being the truth, and vtr the
corresponding realization of the observational error;
The residual r with respect to x is given by
r ≡ H(x)− ytr;

The residual norm ‖r‖R ≡
√

rT R−1 r;

5 / 32



Ensemble
Kalman

filtering with
residual
nudging

Xiaodong Luo
(IRIS), and

Ibrahim Hoteit
(KAUST)

Introduction
Problem statement

Residual nudging

Residual
nudging with
linear
observations

Residual
nudging with
nonlinear
observations

Future plan

References

Residual nudging (1/3)

Additional notations

The measured observation (data) ytr is decomposed as
ytr = H(xtr) + vtr, with xtr being the truth, and vtr the
corresponding realization of the observational error;
The residual r with respect to x is given by
r ≡ H(x)− ytr;
The residual norm ‖r‖R ≡

√
rT R−1 r;

5 / 32



Ensemble
Kalman

filtering with
residual
nudging

Xiaodong Luo
(IRIS), and

Ibrahim Hoteit
(KAUST)

Introduction
Problem statement

Residual nudging

Residual
nudging with
linear
observations

Residual
nudging with
nonlinear
observations

Future plan

References

Residual nudging (2/3)
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An ad hoc criterion
Consider the residual r̂ with respect to an estimate x̂. By
definition we have

r̂ = H(x̂)− ytr = (H(x̂)−H(xtr))− vtr .

Therefore by the triangle inequality

‖r̂‖R ≤ ‖H(x̂)−H(xtr)‖R + ‖vtr‖R .

If the filter performs reasonably well, we expect that
‖H(x̂)−H(xtr)‖R may not be significantly larger than
‖vtr‖R.

On the other hand,
(E(‖v‖R))2 ≤ E(‖v‖2

R)

= trace
(
R−1E(vvT)

)
= trace(Ip) = p ,

where Ip is the p-dimensional identity matrix (p is the
observation size).
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Residual nudging (3/3)

Therefore our criterion is to require

‖r̂‖R ≤ β
√

p

for some positive scalar β. This is used as our objective
when we “design” the filter.

Remark: Later we may also consider a modified criterion
βl
√

p ≤ ‖r̂‖R ≤ βu
√

p for some coefficients 0 ≤ βl ≤ βu.
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Method A (1/3)

The objective
The residual norm ‖r̂a‖R of the analysis x̂a (i.e., the posterior
estimate) be no larger than β

√
p for a pre-chosen β > 0.

9 / 32
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Method A (2/3)

Procedures (Luo and Hoteit, 2012, 2013b)
Given an analysis x̂a from a data assimilation algorithm,

1 calculate the residual norm ‖r̂a‖R;

2 if ‖r̂a‖R ≤ β
√

p, accept x̂a as the final estimate without
any change (stop);

3 otherwise, calculate a fraction coefficient
c = β

√
p/‖r̂a‖R, and let the modified estimate x̃a be

given by

x̃a = c x̂a + (1− c) xo( called observation inversion ) ,

where xo is a solution of the equation Hx = ytr;

NB: Step 2 can be incorporated into Step 3 by letting

c = min(1, β
√

p/‖r̂a‖R)

10 / 32
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Method A (3/3)

An analysis of the procedures
With the above procedures, the (potentially) modified
residual is given by

r̃a = Hx̃a − ytr

= Hx̃a −Hxo (by Hxo = ytr)

= c (Hx̂a −Hxo) (by x̃a = c x̂a + (1− c) xo)

= c r̂a (by Hxo = ytr again).

Since c = min(1, β
√

p/‖r̂a‖R) ≤ β√p/‖r̂a‖R,

‖r̃a‖R = ‖c r̂a‖R

≤ ‖r̂a‖R × β
√

p/‖r̂a‖R

= β
√

p ,as desired.

11 / 32
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Motivation

The previous method is applicable to various data
assimilation methods (e.g., the particle filter, see Luo
and Hoteit, 2013b);

Motivation
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Motivation

The previous method is applicable to various data
assimilation methods (e.g., the particle filter, see Luo
and Hoteit, 2013b);
On the other hand, though, it requires an observation
inversion and thus incurs extra computational cost;

Motivation
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MotivationMotivation

In the second method, observation inversion is
avoided;
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MotivationMotivation

In the second method, observation inversion is
avoided;
The associated analytic results, however, may be
filter-dependent.
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The objective (method B)

The residual norm ‖r̂a‖R of the analysis x̂a is bounded by
βl
√

p ≤ ‖r̂a‖R ≤ βu
√

p for some pre-chosen βl and βu.
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An analysis in the framework of ensemble transform
Kalman filter (Luo and Hoteit, 2013a)
Consider a family of mean update formulae in the
framework of ensemble transform Kalman filter (ETKF), in
terms of

x̂a = x̂b + G
(
ytr −Hx̂b) ,

G = ĈbHT
(
δHĈbHT + γ R

)−1
,

where
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terms of

x̂a = x̂b + G
(
ytr −Hx̂b) ,

G = ĈbHT
(
δHĈbHT + γ R

)−1
,

where

δ and γ are some positive scalars;
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An analysis in the framework of ensemble transform
Kalman filter (Luo and Hoteit, 2013a)
Consider a family of mean update formulae in the
framework of ensemble transform Kalman filter (ETKF), in
terms of

x̂a = x̂b + G
(
ytr −Hx̂b) ,

G = ĈbHT
(
δHĈbHT + γ R

)−1
,

where

Ĉb is a symmetric, positive semi-definite matrix;

NB: In general Ĉb may be related, but not necessarily
proportional, to the sample error covariance P̂b of the
background ensemble.
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An analysis in the framework of ensemble transform
Kalman filter (Luo and Hoteit, 2013a)
Consider a family of mean update formulae in the
framework of ensemble transform Kalman filter (ETKF), in
terms of

x̂a = x̂b + G
(
ytr −Hx̂b) ,

G = ĈbHT
(
δHĈbHT + γ R

)−1
,

where

If δ = 1, then the above update formula resembles that
in the EnKF, with 1/γ being analogous to the
multiplicative inflation factor.



Ensemble
Kalman

filtering with
residual
nudging

Xiaodong Luo
(IRIS), and

Ibrahim Hoteit
(KAUST)

Introduction

Residual
nudging with
linear
observations
Method A

Method B

Residual
nudging with
nonlinear
observations

Future plan

References

Method B (3/4)

Let
A ≡ R−1/2HĈbHTR−T/2 ,

then it can be shown that

(R−1/2r̂a) = Φ(R−1/2r̂b) ,

with Φ ≡ Ip − A (δA + γIp)−1 ,

r̂• = Hx̂• − ytr .

Therefore

‖r̂a‖R = ‖R−1/2r̂a‖2 = ‖Φ (R−1/2r̂b)‖2 .

Applying to ‖r̂a‖R the following inequalities

‖M−1‖−1
2 ‖z‖2 ≤ ‖M z‖2 ≤ ‖M‖2 ‖z‖2

15 / 32
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for the specific case δ = 1 we have the following bounds
for γ:

ξl

1− ξl
λmax ≤ γ ≤

ξu

1− ξu
λmin ,

subject to βl ≤
βu

κ+ (1− κ) ξu
(from

ξl

1− ξl
λmax ≤

ξu

1− ξu
λmin) ,

with ξl, ξu ∈ [0, 1) ,

where

ξ• ≡ β•
√

p/‖r̂b‖R;

λ• are the eigenvalues of A ≡ R−1/2HĈbHTR−T/2;

κ = λmax/λmin, i.e., the condition number of A;

Remarks: ξl, ξu ∈ [1,+∞) corresponds to trivial or
infeasible cases (Luo and Hoteit, 2013a).
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for the specific case δ = 1 we have the following bounds
for γ:

ξl

1− ξl
λmax ≤ γ ≤

ξu

1− ξu
λmin ,

subject to βl ≤
βu

κ+ (1− κ) ξu
(from

ξl

1− ξl
λmax ≤

ξu

1− ξu
λmin) ,

with ξl, ξu ∈ [0, 1) ,

where

ξ• ≡ β•
√

p/‖r̂b‖R;

λ• are the eigenvalues of A ≡ R−1/2HĈbHTR−T/2;

κ = λmax/λmin, i.e., the condition number of A;

Remarks: ξl, ξu ∈ [1,+∞) corresponds to trivial or
infeasible cases (Luo and Hoteit, 2013a).
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Motivation

It can be shown that, with linear observations,

Kalman update:
x̂a = x̂b + G

(
ytr −Hx̂b

)
,

G = ĈbHT
(

HĈbHT + γ R
)−1

.

m

Least squares problem:
x̂a = argmin

x
‖ytr −Hx‖2

R + γ‖x− x̂b‖2
Ĉb .
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With a nonlinear observation operator H, one may first
seek a “local” solution to the above least squares problem
by linearizing H, and then gradually expand the searching
regime through iteration.

xinit xi−1 Solving the
LS problem xi Stop? xfinal

N

Y

Increase iteration index i by 1

xinit xi−1xi−1 Solving the
LS problem xi

The least squares problem:

argmin
xi
‖ytr−H(xi−1)−Ji−1(xi−xi−1)‖2

R+γi‖xi−xi−1‖2
(Ĉb)i ,

where

Ji−1 is the Jacobian of H around the previous
estimate xi−1;
γ and Ĉb (if necessary) may be adaptive with
iteration;

The least squares problem:

argmin
xi
‖ytr−H(xi−1)−Ji−1(xi−xi−1)‖2

R+γi‖xi−xi−1‖2
(Ĉb)i ,

is solved by

xi = xi−1 + Gi (ytr −H(xi−1)
)
,

Gi = (Ĉb)i(Ji−1)T
(

Ji−1(Ĉb)i(Ji−1)T + γi R
)−1

,

similar to the iteration formulae used in Chen and
Oliver (2012); Emerick and Reynolds (2012).

xi Stop?

N

Increase iteration index i by 1

xi−1 Solving the
LS problem xi Stop? Y

xfinal
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Ji−1(Ĉb)i(Ji−1)T + γi R
)−1

,

similar to the iteration formulae used in Chen and
Oliver (2012); Emerick and Reynolds (2012).

xi Stop?

N

Increase iteration index i by 1

xi−1 Solving the
LS problem xi Stop? Y

xfinal



Ensemble
Kalman

filtering with
residual
nudging

Xiaodong Luo
(IRIS), and

Ibrahim Hoteit
(KAUST)

Introduction

Residual
nudging with
linear
observations

Residual
nudging with
nonlinear
observations
Linearization and
iteration

Numerical results

Future plan

References

Linearization and iteration

19 / 32

xinit xi−1 Solving the
LS problem xi Stop? xfinal

N

Y

Increase iteration index i by 1

xinit xi−1

xi−1 Solving the
LS problem xi

The least squares problem:

argmin
xi
‖ytr−H(xi−1)−Ji−1(xi−xi−1)‖2

R+γi‖xi−xi−1‖2
(Ĉb)i ,

where

Ji−1 is the Jacobian of H around the previous
estimate xi−1;
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Gi = (Ĉb)i(Ji−1)T
(
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(Ĉb)i ,

is solved by

xi = xi−1 + Gi (ytr −H(xi−1)
)
,
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Experiment settings
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Experiment settings

Dynamical model: a modified 40-dimensional Lorenz
96 model

dxj

dt
= (xj+1 − xj−2) xj−1 − xj + Fj, j = 1, · · · , 40. (2)

with Fj being the parameters to be estimated;

NB: The model integration step = 0.05, and the
assimilation time window = 1000 integration steps.
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Experiment settings

True parameters Fj = 8 ∀ j;

Initial ensembles of xj and Fj are drawn at random
from the normal distribution N(0, 1);
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Experiment settings

Parameter time evolution model: (Fj)k+1 = (Fj)k with k
being the time index;

NB: Alternative model (Fj)k+1 = (Fj)k + (wj)k with
noise (wj)k is also possible;
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Experiment settings

Observations: 10 out of 40 state variables (1, 6, 11, · · ·)
are observed with Gaussian measurement noise (zero
mean and variance 1);

The observation operator is x itself for a state variable
x that is to be observed;
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Experiment settings

The observation frequency is every 4 integration
steps;

The parameters Fj are estimated every Sa steps, for
instance, Sa may be a multiple of 4 integration steps;

NB: Sa is not necessarily equal to the length of the
assimilation time window (1000 here). Instead, it may
be shorter.
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Application to a parameter estimation problem (2/5)

Results
Results

iterative optimization Sa = 100
max iter no. = 200 max iter no. = 1000

RMSEs of initial / final 7.9822 / 7.3963 7.9822 / 6.7884ensemble means

CPU time 486.1082 3321.1528

iterative optimization Sa = 1000
max iter no. = 200 max iter no. = 1000

RMSEs of initial / final 7.9822 / 7.9754 7.9822 / 7.9754ensemble means

CPU time 777.8134 5440.5005
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Application to a parameter estimation problem (3/5)

Results (cont’d)

Results of the iterative optimization with Sa = 100 and iter no. =
1000.
vertical: parameter variable index; horizontal: ensemble member
index;
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Application to a parameter estimation problem (4/5)

Results (cont’d)
Time series of the estimated parameter variables F1,F11,F21,F31
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Results (cont’d)

Results of the iterative optimization with Sa = 100 and iter no.
= 1000.
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1 Introduction

2 Residual nudging with linear observations

3 Residual nudging with nonlinear observations

4 Future plan
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Future plan

Possible issues in future investigations might include

the choice of β;

alternative ways to approximate the Jacobian matrix;
alternative optimization algorithms;
applications to reservoir data assimilation and other
related problems;
others based on your feedback;
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Extra results with the parameter model
(Fj)k+1 = (Fj)k + (wj)k (1/3)

Results

Results of the iterative optimization with Sa = 100 and iter no. =
1000.
vertical: parameter variable index; horizontal: ensemble member
index;
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Extra results with the parameter model
(Fj)k+1 = (Fj)k + (wj)k (2/3)

Results (cont’d)
Time series of the estimated parameter variables F1,F11,F21,F31
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Extra results with the parameter model
(Fj)k+1 = (Fj)k + (wj)k (3/3)

Results (cont’d)

Results of the iterative optimization with Sa = 100 and iter no.
= 1000.
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