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Procedures (Luo and Hoteit, 2012, 2013b)
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any change (stop);
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¢ = min(1, 3\/p/||t||)
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[F[r = lleF|[r
< [[#¥]r x Bv/p/[F*|r
= B4/p,as desired.
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Application to a parameter estimation problem (3/5)

Results (cont’d)

Results of the iterative optimization with S, = 100 and iter no. =

1000.

vertical: parameter variable index; horizontal: ensemble member

index;
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Ensemble Results (Cont,d)
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Application to a parameter estimation problem (5/5)

Results (cont’d)

Results of the iterative optimization with S, = 100 and iter no.

= 1000.

= = Initial residual norm
Final residual norm
PN - - Targeted residual norm|

Residual norm
IS
8

Residual norm

100 200 300 400 500 600 700 800 900 1000
Time step

(a) Time series of the residual
norms within the assimilation
time window
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Number of iterations
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(b) Residual norm reduction at
time step 1000
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Extra results with the parameter model

(Fik1 = (Fj)x + (Wi (1/3)

Results

Results of the iterative optimization with S, = 100 and iter no. =

1000.

vertical: parameter variable index; horizontal: ensemble member

index;
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Extra results with the parameter model

(Fpkrt = (Fje + (wy)i (213)

Results (cont'd) _
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Extra results with the parameter model

(Fkt1 = (Fj)i + (wy)x (3/13)

Ensemble Results (cont’d)
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