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 Multi-scale approach: 
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 Adaptive localization 

 Identify important parameters 

 Preservation of the prior: modify only where needed 
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Motivations 

 Match the data and preserve the prior models 

 Multi-scale approach: 

 Helps to avoid local minima  

 Stabilizes the inversion 

 Modifies low resolution first 

 Adaptive localization 

 Identify important parameters 

 Preservation of the prior: modify only where needed 

 

 Ensemble based method: 

 Use of any parameterization 
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Multi-scale parameterization: wavelets 

 Parameterization localized both in space and frequency 
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Multi-scale parameterization: wavelets 

 Sparse basis: only few coefficients are needed to characterize 
most significant features: 

 

 

 

 

 

 

 

 

 

 Second generation wavelets 

 Much more flexible: can be used on stratigraphical grids 
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Multi-scale parameterization: wavelets 

 Sparse basis: only few coefficients are needed to characterize 
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 Second generation wavelets 

 Much more flexible: can be used on stratigraphical grids 
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Initial 3D property 
Property reconstructed using 

 1% of the wavelets coefficients 
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Iterative LM-enRML using wavelet parameterization  

 Levenberg-Marquadt optimization: 

 δ𝛄opt =  −
1

𝜆+1
(𝛿𝛄𝑝𝑟 + 𝑲(𝜆). 𝑮. 𝛿𝛄𝑝𝑟 − 𝑲(𝜆). 𝛿𝒅  

 

 
where 𝛄 :{vector of wavelet coefficients}, 𝜆:{LM damping factor}, 

𝑲:{similar to Kalman gain}, 𝑮 :{Sensitivity matrix}, 𝛿𝒅 :{data mismatch} 

 Prior constraint term dominates in insensitive areas 

 Data mismatch term dominates in sensitive areas 

 

 Global sensitivity matrix G computed from an ensemble 

 

 Sensitivity matrix is used to automatically compute the 
localization vector 
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Key points of the method 

 Initial smoothing: 

 Automatically done by dividing wavelets coefficients 

 Easily reversible 

 Minimize the effects of high frequencies on flow response 

 Preserve the initial main features 

 Multi-scale approach 

 The optimization of the low frequencies does not destroying main 
features 

  The mismatch is significantly decreased when starting the 
optimization of the high frequencies 

 Multi-scale Adaptive localization 

 Automatic and dynamic: compute from the current sensitivity 
matrix 

 Allows large scale updates 

 Good preservation of the prior in insensitive areas 
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Synthetic 2D case 

 Grid with 3400 active cells 

 4 injectors (injection rate constraint) and 9 producers 
(Oil recovery constraint) 

 7,5 years of history: Gas-Oil-Ratio (GOR), water cut 
(WWCT), pressure (WBHP) 
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Optimizations 

 Case A: Adaptive multi-scale LM-enRML  

 Case B: LM-enRML with prior term  

 Case C: LM-enRML without prior term 

 

 

 No a prior localization 

 About 350 data points 

 Ensemble of 60 realizations generated using object-
based modeling 

 15 LM-enRML iterations 

 Use the same LM-enRML control parameter 𝜆  

6/4/2013 

I - 10/21 



Average data mismatches 
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WBHP PRO 6 
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Ensemble averages 
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PORO realizations 
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Conclusions 

 The wavelet parameterization permits to work both in space and 
frequency 

 The adaptive multi-scale method stabilizes the inversion: 

 Manage to get a good match while minimizing the changes 

 Avoid addition of noise, better preserve the prior and avoid ensemble 
collapse 

 

 Three keys points of the method: 

 Simplification of the problem (initial smoothing) helps to improve the 
estimation of G for the large scale coefficients 

 Multi-scale approach: allows a significant reduction of the mismatch by 
only modifying large scale parameters 

 Adaptive localization: is dynamic, automatic and allows global updates of 
the field 
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