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Motivations

= Match the data and preserve the prior models
= Multi-scale approach:
= Helps to avoid local minima
= Stabilizes the inversion
= Modifies low resolution first
= Adaptive localization
= Identify important parameters
= Preservation of the prior: modify only where needed

= Ensemble based method:
= Use of any parameterization
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Multi-scale parameterization: wavelets

= Parameterization localized both in space and frequency

Coarse version Frequency

Frequency

Original signal

From [Xiang-Yang, 2008]
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Multi-scale parameterization: wavelets

= Sparse basis: only few coefficients are needed to characterize
most significant features:

Initial 3D property

= Second generation wavelets
= Much more flexible: can be used on stratigraphical grids

6/4/2013 &CGGVERIT[\S



D e e
Multi-scale parameterization: wavelets

= Sparse basis: only few coefficients are needed to characterize
most significant features:

Property reconstructed using
1% of the wavelets coefficients

Initial 3D property

= Second generation wavelets
= Much more flexible: can be used on stratigraphical grids
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Iterative LM-enRML using wavelet parameterization

= Levenberg-Marquadt optimization:

1
SYopt = 717 SVpr + K(2)- 6.8V, — K(2). 5

Y \ Y J

Prior constraint term Data mismatch term

where y :{vector of wavelet coefficients}, 1:{LM damping factor},
K:{similar to Kalman gain}, G :{Sensitivity matrix}, 6d :{data mismatch}

=  Prior constraint term dominates in insensitive areas
= Data mismatch term dominates in sensitive areas

= Global sensitivity matrix G computed from an ensemble

= Sensitivity matrix is used to automatically compute the
localization vector
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Key points of the method

= Initial smoothing:

=  Automatically done by dividing wavelets coefficients
= Easily reversible

= Minimize the effects of high frequencies on flow response
= Preserve the initial main features
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Key points of the method

= Initial smoothing:

= Automatically done by dividing wavelets coefficients
= Easily reversible

= Minimize the effects of high frequencies on flow response
= Preserve the initial main features

= Multi-scale approach

= The optimization of the low frequencies does not destroying main
features

= The mismatch is significantly decreased when starting the
optimization of the high frequencies
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Key points of the method

= Initial smoothing:
= Automatically done by dividing wavelets coeffi
= Easily reversible
= Minimize the effects of high frequencies on flo
= Preserve the initial main features
= Multi-scale approach

= The optimization of the low frequencies does r
features

=  The mismatch is significantly decreased when
optimization of the high frequencies

= Multi-scale Adaptive localization

=  Automatic and dynamic: compute from the current sensitivity
matrix

= Allows large scale updates
= Good preservation of the prior in insensitive areas
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Synthetic 2D case

= Grid with 3400 active cells

= 4 injectors (injection rate constraint) and 9 producers
(Oil recovery constraint)

= 7,5 years of history: Gas-0Oil-Ratio (GOR), water cut
(WWCT), pressure (WBHP)
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Optimizations

= Case A: Adaptive multi-scale LM-enRML
= Case B: LM-enRML with prior term
= Case C: LM-enRML without prior term

= No a prior localization
= About 350 data points

= Ensemble of 60 realizations generated using object-
based modeling

= 15 LM-enRML iterations
= Use the same LM-enRML control parameter 2
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LOG-PERM realizations
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Average deviation from prior
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Conclusions

= The wavelet parameterization permits to work both in space and
frequency
= The adaptive multi-scale method stabilizes the inversion:
= Manage to get a good match while minimizing the changes

= Avoid addition of noise, better preserve the prior and avoid ensemble
collapse

=  Three keys points of the method:

= Simplification of the problem (initial smoothing) helps to improve the
estimation of G for the large scale coefficients

= Multi-scale approach: allows a significant reduction of the mismatch by
only modifying large scale parameters

= Adaptive localization: is dynamic, automatic and allows global updates of
the field
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