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Uncertainty Quantification (UQ): Forward Problem
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Task: solve y; = h(x;) via simulation; x; is uncertain — how does that
influence the output?

Difficulties: many uncertain parameters; simulation expensive;
propagation should be exact, but typically cannot modify simulation code
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Uncertainty Quantification (UQ): Inverse Problem
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Historical data z;: assume that z; = h(X;) + €
0 X, represents the “true” state and parameters (unknown)

Historical Pressure Data of Well 1
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Task: What does uncertain data z; tell about uncertain input x,?

Difficulties: h not invertible; historical data noisy; ill-posed problem, not
uniquely solvable.
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Stochastic Methods for Uncertainty Quantification
Basics & Notation

1. Introduce a parameter w describing uncertainty,
2. Use probability theory to quantify it.

» Primary quantities: random variables (RVs; here: of finite variance):

x(w),y(w), z(w), e(w) € L,(2; V)
0 2: sample space of possible outcomes, V' vector space.

> Inherent treatment of uncertainties from different sources

0 Uncertain initial state & parameters; model uncertainties;
measurement noise

> Inverse problem no longer ill-posed
> Inference: Bayes's rule = conditional expectation (CE)

o Consistent way to include new information (more on that later)

Stochastic Methods for Uncertainty Quantification
Computer Representation of Random Variables

» Well known: (Monte Carlo) sampling representation:
R ={r}, i€[1,N,N>1,
rp=r(w), w~P

0 MC sampling + LCE
—> Ensemble Kalman Filter (EnKF) and related methods

0 Known advantages and drawbacks. Can we do better?

« Another popular possibility: spectral representation:

r@) = ) 1 f 6 (0,6 @), )

a€j]

o Series of known functions and basis RVs; spectral coefficients
0 Good: Fast convergence, no random sampling
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Stochastic Methods for Uncertainty Quantification
Polynomial Chaos Expansion — A Stochastic Spectral Proxy Model

» Wiener’s Polynomial Chaos Expansion (PCE) using Hermite
polynomials:

r(w) = Z 74 H (6, (@), ) 0 (@), )

a€j

* Orthogonal basis functions, standard normal basis RVs
* Others are known and possible, e.g.:

— Wiener-Askey: Legendre + Uniform, Jacobi + Beta, ....
— “arbitrary” PC: construct from data

Stochastic Methods for Uncertainty Quantification
Polynomial Chaos Expansion — A Stochastic Spectral Proxy Model

* Question: How to efficiently compute coefficients r+?

» Approach 1: “Intrusive” method
— Implement constitutive law based on spectral expansion
— Results in large coupled systems of equations
— Often infeasible: no access to code, too difficult / costly to change code

 Approach 2: Orthogonality = Use projection:
VYa: r* =(r|H,)/(H,|H,)

— Needs high-dimensional “integrals” (interpolation) over 2
— One way: Collocation

* Interpolation-rules based on polynomial basis, e.g. Gauss-Hermite
— Full tensor grid not feasible = Use “Smolyak sparse grids”
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Stochastic Methods for Uncertainty Quantification
Bayesian Inversion / Conditioning

« Classical tool of inference: Bayes’s theorem gives conditional
probability measure of “model given data”.
— Use MCMC + stochastic proxy to compute posterior

» More “modern”’, equivalent: Conditional expectation (CE) computes
expectation with this posterior measure.

* Inverse problem becomes: Compute X = E(x|x, z)

» CE defined as orthogonal projection (L, —> Hilbert space) of x (“prior”)
on the subspace generated by all measurable functions of x and z:

* span{X |X = f(x, z) for some f}.

X (“posterior”) optimal in the mean square sense

— Very direct approach, no sampling

— Affine approximation - similar to EnKF; square root approach exists
— lterative / non-linear extensions topic of current research
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Numerical Example
Building a Stochastic Proxy Model for Reservoir Simulation
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Numerical Example

Building a Stochastic Proxy Model for Reservoir Simulation

e Grid:31x 21 x 17 = 11067 cells, 9955 active

«  Water-oil system

* 14 faults, three main sand bodies (layers 1-6, 7-12, 13-17)
« One aquifer in central north, connected to lowest sand body
« Three producers, one injector

« Nine independent uncertain parameters:
— Four main fault multipliers
— Three permeability multipliers
— Two z-transmissibility multipliers (layers 6, 12)

 Anpriori determined “reasonable” parameter values using optimization

» Then: Consider each parameter ¢ as Gaussian RV with p% std. dev., i.e.

@(w)~N (o, p/100 abs(¢))
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Numerical Example
Building a Stochastic Proxy Model for Reservoir Simulation
 Task: Proxy model for field oil production total (FOPT) after 6 years

— Note: Building additional proxies is very cheap once collocation points are
known!

— Input uncertainty considered: 5%, unless stated otherwise

* Methods:
— Build PCE proxy of maximum polynomial order 3, using:
1. Full tensor grid of Gauss-Hermite points
* Requires 3° = 19683 simulations
2. Smolyak sparse grid of Gauss-Hermite points
» Requires 181 simulations

— Each proxy has 220 coefficients
— For comparison: MCMC sampling with 50000 samples

Numerical Example
Before: Monte Carlo — A Word of Warning

» Convergence of Monte Carlo is slow (of course... just as reminder ©)

MCISD) ceernre samste sets

MC{500), different sample sets
——— MC{50k)

PIFOPT)

13 131 132 133 13 135 136 137 138 138
FOFT x 10"
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Numerical Example
Results: Full Tensor Grid, PCE of Orders 2 and 3
I I ‘MC(50k)
PCE(2)
PCE(3) [
1.28 1?3 1,52 1,234 ‘1,236 1 I38 1‘4 1.42
FOPT %107
— PCE(2) is slightly off, PCE(3) has converged to MC result
— But 19683 simulations are obviously a problem ©

Numerical Example
Results: Smolyak Sparse Grid, PCE of Order 3

MC(50k)
PCE(3)

p(FOPT)

L L L L L
1.25 1.3 1.35 1.4 1.45 1.5
FOPT x 107

— Ouch... that does not work ®
— An important lesson for Smolyak grids:
Smolyak has negative integration weights - your integrand should not be “noisy”!
— Here: Adaptive time-stepping (!) and (likely) also solution precision are a
problem (under further investigation...)
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Numerical Example
Results: Smolyak Sparse Grid, PCE of Order 3, “Precise” Simulation Results

MC(50k)
— PCE(3), precise salution |

p(FOPT)

128 13 131 132 133 134 135 136 137 138 139
FOPT <107

— Modified simulation time-stepping & solution precision
— Each simulation is obviously slower — but it's “just” 181 of them!

— Systematic error likely due to differences in precision & stepping —
so PCE(3) solution may be even better than MC solution

Numerical Example
Results: PCE Coefficients
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— First coefficient left out (expected value; very large)

— Both coefficient sets represent same proxy

— One expects that coefficients decrease (due to index ordering by “total
degree” of polynomial)

— Left: not converged properly, Right: converged, many higher terms zero
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Numerical Example
Results: PCE Coefficients
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First coefficient left out (expected value; very large)

Both coefficient sets represent same proxy

Left: constructed from full tensor product, Right: sparse tensor product
No visible differences between full tensor and sparse grid

Numerical Example
Results: Similar for 10% Input Uncertainty
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First coefficient left out (expected value; very large)
Reasonable agreement between MC, PCE
Differences likely again due to differences in model precision

Higher-order coefficients become (relative to lower order coefficients)
more important — as one would expect, given larger input uncertainty
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Discussion

» PCE is a specific stochastic spectral proxy model
— PCE just one example; generalisations exist (other distributions)
— Smolyak quadrature is capable of creating this proxy — but it has certain requirements
— The approach is applicable to hydrocarbon reservoir simulation

< Demonstration highlighted advantages of spectral representation
— Better representation of higher moments due to convergence properties
— Any proxy is very cheap to compute once collocation points are available
— Use proxy to precisely & rigorously quantify prediction uncertainty

» Use Bayesian updating for history matching (not demonstrated here)

— Possible to update this proxy directly in the Bayesian sense (no sampling, linear
approximations are computationally cheap, cf. EnKF)

— lterative & non-linear updates topic of research

— Already possible: Use classical approaches like MCMC to compute update — sampling
the proxy is very cheap & still precise!
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Discussion

« Difficulties arise with larger numbers of uncertain input parameters (e.g. uncertain
property maps)

— Requires parameter reduction techniques like KLE, PCA, Kernel-PCA, adaptive
subspace-techniques, ...

 Tuning solver so that solution is “precise enough” for Smolyak may not be simple -
but probably worth it
Acknowledgements

» Functions related to Hermite basis are from SGLib
(https://github.com/ezander/sglib)

Some Selected References

« Pajonk, O.; Rosi¢, B. V. & Matthies, H. G., Sampling-free Linear Bayesian Updating of Model State and
Parameters using a Square Root Approach, Computers & Geosciences, 2013, 55, 70-83

¢ Rosi¢, B. V; Litvinenko, A.; Pajonk, O. & Matthies, H. G., Direct Bayesian Update of Polynomial Chaos
Representations, Journal of Computational Physics, 2012, 231, 5761-5787

¢ Xiu, D., Numerical Methods for Stochastic Computations - A Spectral Method Approach, Princeton
University Press, 2010

« Le Maitre, O. P. & Knio, O. M., Spectral Methods for Uncertainty Quantification with Applications to
Computational Fluid Dynamics, Springer, 2010

£
T
=
=
©
o
o

iJ ]

SPT GROUP

A Schlumberger Company

Australia, Perth Tel: +61 B 9286 6500 Nomway, Oslo Tel: +47 63 89 04 00
Brazil, Rio de Janeim Tel: +55 21 3544 0002 Norway, Bargen Tel: +47 63 89 04 00
Canada, Calgary Tel: +1 403 277 6688 Russia, Moscow Tel: +7 495798 BEEE
China, Beljing Tel: +86 10 6587 8527 UAE, Dubai Tek +971 4 426 4855
Germany, Hamburg Tel: +49 40 27 8588 10 UK, London Tak: +44 1483 307 870
Mexico, Mexico City Tel +52 55 5211 9211 USA, Houston Tek: +1 281 4969898

Malaysia, Kuala Lumpur  Tek: +60 3 2161 4570

Www.sptgroup.com

13



