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Uncertainty Quantification (UQ): Forward Problem

Task: solve ࢟௧ ൌ ݄ ࢞௧ via simulation; ࢞௧ is uncertain – how does that 
influence the output?
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Difficulties: many uncertain parameters; simulation expensive; 
propagation should be exact, but typically cannot modify simulation code
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Uncertainty Quantification (UQ): Inverse Problem

Difficulties: ݄ not invertible; historical data noisy; ill-posed problem, not 
uniquely solvable. 
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Historical data ࢠ௧: assume that ࢠ௧ ൌ ݄ ෕࢞௧ ൅ ࣕ
o ෕࢞௧ represents the “true” state and parameters (unknown)

Task: What does uncertain data ࢠ௧ tell about uncertain input ࢞௧?
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Stochastic Methods for Uncertainty Quantification
Basics & Notation

• Primary quantities: random variables (RVs; here: of finite variance): 
࢞ ߱ , ࢟ ߱ , ࢠ ߱ , ࣕ ߱ ∈ ଶܮ ;ߗ ܸ
o :ߗ sample space of possible outcomes, ܸ: vector space.

 Inherent treatment of uncertainties from different sources

o Uncertain initial state & parameters; model uncertainties; 
measurement noise

 Inverse problem no longer ill-posed

 Inference: Bayes‘s rule  conditional expectation (CE)

o Consistent way to include new information (more on that later)

1. Introduce a parameter ࣓ describing uncertainty,
2. Use probability theory to quantify it.
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Stochastic Methods for Uncertainty Quantification
Computer Representation of Random Variables

• Well known: (Monte Carlo) sampling representation:

o MC sampling + LCE 
 Ensemble Kalman Filter (EnKF) and related methods

o Known advantages and drawbacks. Can we do better?

• Another popular possibility: spectral representation:

o Series of known functions and basis RVs; spectral coefficients
o Good: Fast convergence, no random sampling

ܴ ൌ ௜ݎ , ݅ ∈ 1, ܰ , ܰ ≫ 1,
௜ݎ ൌ ݎ ߱௜ , ߱௜~	ܲ

ݎ ߱ ൌ෍ߙݎ

ఈ∈௃

ߙ݂ ଵߦ ߱ , ଶߦ ߱ ,…
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Stochastic Methods for Uncertainty Quantification
Polynomial Chaos Expansion – A Stochastic Spectral Proxy Model

• Wiener’s Polynomial Chaos Expansion (PCE) using Hermite 
polynomials:

࢘ ߱ ൌ෍࢘ߙ

ఈ∈௃

ߙܪ ଵߠ ߱ ,… , ௞ߠ ߱ ,…

• Orthogonal basis functions, standard normal basis RVs

• Others are known and possible, e.g.:
 Wiener-Askey: Legendre + Uniform, Jacobi + Beta, ….

 “arbitrary” PC: construct from data
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Stochastic Methods for Uncertainty Quantification
Polynomial Chaos Expansion – A Stochastic Spectral Proxy Model

• Question: How to efficiently compute coefficients ࢘ߙ?

• Approach 1: “Intrusive” method
– Implement constitutive law based on spectral expansion
– Results in large coupled systems of equations
– Often infeasible: no access to code, too difficult / costly to change code

• Approach 2: Orthogonality  Use projection: 

:ߙ∀ ߙݎ	 ൌ ݎ ߙܪ ߙܪ ⁄ߙܪ

– Needs high-dimensional “integrals” (interpolation) over ߗ
– One way: Collocation

• Interpolation-rules based on polynomial basis, e.g. Gauss-Hermite
– Full tensor grid not feasible  Use “Smolyak sparse grids”
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Stochastic Methods for Uncertainty Quantification
Bayesian Inversion / Conditioning

• Classical tool of inference: Bayes’s theorem gives conditional 
probability measure of “model given data”.
 Use MCMC + stochastic proxy to compute posterior

• More “modern”, equivalent: Conditional expectation (CE) computes 
expectation with this posterior measure.

• Inverse problem becomes: Compute ෝ࢞ ൌ ܧ ࢞ ࢞, ሻࢠ
• CE defined as orthogonal projection (ܮଶ Hilbert space) of ࢞ (“prior”) 

on the subspace generated by all measurable functions of ࢞ and ࢠ:

• ݊ܽ݌ݏ ෭࢞	 ෭࢞ ൌ ݂ሺ࢞, ሻࢠ for some ݂ሽ.

• ෝ࢞ (“posterior”) optimal in the mean square sense
 Very direct approach, no sampling
 Affine approximation  similar to EnKF; square root approach exists
 Iterative / non-linear extensions topic of current research
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Numerical Example
Building a Stochastic Proxy Model for Reservoir Simulation
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Numerical Example
Building a Stochastic Proxy Model for Reservoir Simulation

• Grid: 31 ൈ 21 ൈ 17 ൌ 11067 cells, 9955 active

• Water-oil system

• 14 faults, three main sand bodies (layers 1-6, 7-12, 13-17)

• One aquifer in central north, connected to lowest sand body

• Three producers, one injector

• Nine independent uncertain parameters:
– Four main fault multipliers

– Three permeability multipliers

– Two z-transmissibility multipliers (layers 6, 12)

• A priori determined “reasonable” parameter values using optimization

• Then: Consider each parameter ߮ as Gaussian RV with ݌% std. dev., i.e. 
߮ ߱ ~ܰሺ߮଴, 100/݌ ሺ߮଴ሻሻݏܾܽ
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Numerical Example
Building a Stochastic Proxy Model for Reservoir Simulation

• Task: Proxy model for field oil production total (FOPT) after 6 years
– Note: Building additional proxies is very cheap once collocation points are 

known!
– Input uncertainty considered: 5%, unless stated otherwise

• Methods:
– Build PCE proxy of maximum polynomial order 3, using:
1. Full tensor grid of Gauss-Hermite points

• Requires 3ଽ ൌ 19683 simulations
2. Smolyak sparse grid of Gauss-Hermite points

• Requires 181 simulations

– Each proxy has 220 coefficients
– For comparison: MCMC sampling with 50000 samples
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Numerical Example
Before: Monte Carlo – A Word of Warning

• Convergence of Monte Carlo is slow (of course... just as reminder )
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Numerical Example
Results: Full Tensor Grid, PCE of Orders 2 and 3

– PCE(2) is slightly off, PCE(3) has converged to MC result

– But 19683 simulations are obviously a problem 
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Numerical Example
Results: Smolyak Sparse Grid, PCE of Order 3

– Ouch… that does not work 
– An important lesson for Smolyak grids:

Smolyak has negative integration weights - your integrand should not be “noisy”!
– Here: Adaptive time-stepping (!) and (likely) also solution precision are a 

problem (under further investigation…)
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Numerical Example
Results: Smolyak Sparse Grid, PCE of Order 3, “Precise” Simulation Results

– Modified simulation time-stepping & solution precision

– Each simulation is obviously slower – but it’s “just” 181 of them!

– Systematic error likely due to differences in precision & stepping –
so PCE(3) solution may be even better than MC solution
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Numerical Example
Results: PCE Coefficients

– First coefficient left out (expected value; very large)
– Both coefficient sets represent same proxy
– One expects that coefficients decrease (due to index ordering by “total 

degree” of polynomial)
– Left: not converged properly, Right: converged, many higher terms zero
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Numerical Example
Results: PCE Coefficients

– First coefficient left out (expected value; very large)

– Both coefficient sets represent same proxy

– Left: constructed from full tensor product, Right: sparse tensor product

– No visible differences between full tensor and sparse grid
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Numerical Example
Results: Similar for 10% Input Uncertainty

– First coefficient left out (expected value; very large)
– Reasonable agreement between MC, PCE
– Differences likely again due to differences in model precision
– Higher-order coefficients become (relative to lower order coefficients) 

more important – as one would expect, given larger input uncertainty
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Discussion

• PCE is a specific stochastic spectral proxy model
– PCE just one example; generalisations exist (other distributions)
– Smolyak quadrature is capable of creating this proxy – but it has certain requirements
– The approach is applicable to hydrocarbon reservoir simulation

• Demonstration highlighted advantages of spectral representation
– Better representation of higher moments due to convergence properties
– Any proxy is very cheap to compute once collocation points are available
– Use proxy to precisely & rigorously quantify prediction uncertainty

• Use Bayesian updating for history matching (not demonstrated here)
– Possible to update this proxy directly in the Bayesian sense (no sampling, linear 

approximations are computationally cheap, cf. EnKF)
– Iterative & non-linear updates topic of research
– Already possible: Use classical approaches like MCMC to compute update – sampling 

the proxy is very cheap & still precise!
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Discussion

• Difficulties arise with larger numbers of uncertain input parameters (e.g. uncertain 
property maps)
– Requires parameter reduction techniques like KLE, PCA, Kernel-PCA, adaptive 

subspace-techniques, …

• Tuning solver so that solution is “precise enough” for Smolyak may not be simple –
but probably worth it
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