

Outline
- Motivation
 Stochastic Methods for Uncertainty Quantification Stochastic Spectral Proxy Models Outlook: Inversion Methods based on Proxies
 Numerical Example Building a Stochastic Spectral Proxy Model for Reservoir Simulation
- Discussion

1

Stochastic Methods for Uncertainty Quantification Basics & Notation

Introduce a parameter ω describing uncertainty,
 Use probability theory to quantify it.

- Primary quantities: random variables (RVs; here: of finite variance):
 x(ω), *y*(ω), *z*(ω), *ε*(ω) ∈ L₂(Ω; V)
 - $\circ \Omega$: sample space of possible outcomes, *V*: vector space.
- Inherent treatment of uncertainties from different sources
 - Uncertain initial state & parameters; model uncertainties; measurement noise
- Inverse problem no longer ill-posed
- > Inference: Bayes's rule \rightarrow conditional expectation (CE)
 - o Consistent way to include new information (more on that later)

Stochastic Methods for Uncertainty Quantification Computer Representation of Random Variables

- Well known: (Monte Carlo) sampling representation: $R = \{r_i\}, \quad i \in [1, N], N \gg 1,$ $r_i = r(\omega_i), \quad \omega_i \sim P$
 - MC sampling + LCE → Ensemble Kalman Filter (EnKF) and related methods
 - \circ $\,$ Known advantages and drawbacks. Can we do better?
- Another popular possibility: spectral representation:

$$r(\omega) = \sum_{\alpha \in J} r^{\alpha} f_{\alpha}(\xi_1(\omega), \xi_2(\omega), \dots)$$

- o Series of known functions and basis RVs; spectral coefficients
- o Good: Fast convergence, no random sampling

Numerical Example Building a Stochastic Proxy Model for Reservoir Simulation Grid: $31 \times 21 \times 17 = 11067$ cells, 9955 active • Water-oil system 14 faults, three main sand bodies (layers 1-6, 7-12, 13-17) One aquifer in central north, connected to lowest sand body Three producers, one injector • Nine independent uncertain parameters: - Four main fault multipliers - Three permeability multipliers Two z-transmissibility multipliers (layers 6, 12) _ A priori determined "reasonable" parameter values using optimization •

Then: Consider each parameter φ as Gaussian RV with p% std. dev., i.e. $\varphi(\omega) \sim N(\varphi_0, p/100 \ abs(\varphi_0))$

Di	scussion
•	 PCE is a specific stochastic spectral proxy model PCE just one example; generalisations exist (other distributions) Smolyak quadrature is capable of creating this proxy – but it has certain requirements The approach is applicable to hydrocarbon reservoir simulation
•	 Demonstration highlighted advantages of spectral representation Better representation of higher moments due to convergence properties Any proxy is very cheap to compute once collocation points are available Use proxy to precisely & rigorously quantify prediction uncertainty
•	 Use Bayesian updating for history matching (not demonstrated here) Possible to update this proxy <i>directly</i> in the Bayesian sense (no sampling, linear approximations are computationally cheap, cf. EnKF) Iterative & non-linear updates topic of research <u>Already possible:</u> Use classical approaches like MCMC to compute update – sampling the proxy is <i>very</i> cheap & still precise!

Discussion

- Difficulties arise with larger numbers of uncertain input parameters (e.g. uncertain property maps)
 - Requires parameter reduction techniques like KLE, PCA, Kernel-PCA, adaptive subspace-techniques, ...
- Tuning solver so that solution is "precise enough" for Smolyak may not be simple -• but probably worth it

Acknowledgements

Functions related to Hermite basis are from SGLib • (https://github.com/ezander/sglib)

Some Selected References

- Pajonk, O.; Rosić, B. V. & Matthies, H. G., Sampling-free Linear Bayesian Updating of Model State and Parameters using a Square Root Approach, *Computers & Geosciences*, 2013, *55*, 70-83 Rosić, B. V.; Litvinenko, A.; Pajonk, O. & Matthies, H. G., Direct Bayesian Update of Polynomial Chaos Representations, *Journal of Computational Physics*, 2012, *231*, 5761-5787
- Xiu, D., Numerical Methods for Stochastic Computations A Spectral Method Approach, Princeton University Press, 2010
- Le Maître, O. P. & Knio, O. M., Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics, Springer, 2010

