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SUMMARY
The paper focuses on a Chemical EOR study for a mature field. The field was selected due to its volume in
place and good petrophysical properties. Indeed, the preliminary screening gave indication that polymer
injection could be a promising EOR technique. New core data, SCAL and PLT were acquired and a high
resolution model of the pilot area was built to integrate such new data and to properly capture the
behaviour of the chemicals.
The sector modelling was challenging due to the complexity of the history match and polymer injection
optimization. The field has been producing for 60 years. Moreover, due to the complex structural settings,
the sector model is not completely isolated from the full field model and dummy wells were introduced to
mimic the flow interaction with the rest of the reservoir.
A Computer Assisted History Matching (CAHM) was carried out by the means of the Ensemble Kalman
Filter (EnKF). The EnKF is a Monte-Carlo method that automatically updates  an ensemble of reservoir
models by production data integration. The EnKF is capable of providing a set of matched models that
preserve the geological coherence which can be used to quantify uncertainty in forecast production.
In this paper, we present the application of the EnKF to history match the sector model and the consequent
optimization for polymer injection. EnKF was used to calibrate petrophysical properties, relative
permeability and faults transmissibility integrating measurements, shut-in pressures and rates, of 14 wells
including the dummy wells. The final output is a set of 100 alternative models that properly match
production data which were used to set up and optimize the forecast development strategy through
polymer injection.
This application provides evidence that the EnKF is effective and efficient for history matching. Moreover,
dealing with multiple models put the basis for a conscious estimation of future production and a more
realiable risk evaluation on EOR strategy.
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Introduction 

This work documents the reservoir modelling study developed as part of the company’s effort to 
implement a pilot chemical Enhanced Oil Recovery (EOR) project in a giant on-shore brown field. 
The aim of the study was to quantify the benefit of the EOR project in terms of expected cumulative 
oil production and associated net present value (NPV), providing also confidence intervals which 
accounted for the geological/engineering uncertainty and availability of production data. To achieve 
these results, it was essential to implement a workflow where ensemble based methods such as the 
Ensemble Kalman Filter (EnKF) and the Ensemble Optimisation (EnOpt) are essential and distinctive 
components, [13], [6].  
 
The field at hand is composed by 12 heavily faulted reservoirs included in four main Zones. The 
deposits are turbiditic and deltaic sandstone with interbedded shales and anhydrite intercalations 
ranging from Lower to Upper Miocene Age. From a structural point of view, the field could be 
described as a NNW-SSE direction anticline cut by 2 major faulting systems. The production started 
up as primary depletion in 1953, then water injection was gradually implemented in the different 
reservoirs and nowadays the field is under secondary recovery by means of peripheral water flooding, 
with high water-cut in most of the wells. 
 
According to the reservoir rock and fluid properties, a preliminary screening gave indication that 
polymer injection could be a promising chemical EOR technique for the field. Indeed, the water 
flooding is characterised by an unfavourable mobility ratio, hence the volumetric efficiency of the 
process may be improved by means of a more favourable mobility ratio as a results of a polymer 
solubilised in the injected water. The next step was the selection of a suitable area for polymer 
injection. The area was chosen according to various criteria, including the presence of remarkable oil 
in place, a low actual recovery factor, good petrophysical properties, and the possibility to implement 
a careful reservoir monitoring process to evaluate the benefits.  
 
The pilot area is shown in Figure 1. To better characterize the reservoir, the entire thickness of the 
pilot area was cored taking the opportunity of a vertical well targeting deeper objectives in the field. 
Then, a comprehensive experimental program was executed, including routine and special core 
analysis. This provided detailed information on the petrophysical properties of the area, including an 
improved porosity/permeability correlation. 
In addition, an oil sample was acquired at the wellhead of the dedicated producer P6. This dead oil 
sample allowed a tuning of the polymer rheological properties at reservoir temperature and water 
formation salinity using commercial compositions. Moreover, the polymer adsorption and the residual 
resistance factor were measured trough a core flooding in the laboratories [3].   
 

 
Figure 1 Pilot area for the EOR application. 



 

IOR 2013 – 17th European Symposium on Improved Oil Recovery 
St. Petersburg, Russia, 16-18 April 2013 

 
The evaluation of a chemical EOR project by means of reservoir modelling requires attention on 
reservoir heterogeneity and uncertainty. Indeed, heterogeneity drives water in the reservoirs while 
uncertainty in the reconstruction of the subsurface impacts the confidence of the expect recovery due 
to EOR. 
The actual full field model poorly characterized the pilot area, which was only represented by a single 
thick layer with cell spacing of 200 x 200 m2. This resolution is not enough for a chemical EOR study, 
which typically requires much more details both vertically and laterally. Therefore, a sector model 
was needed in order to better capture properties and heterogeneities of the pilot area. 
To manage the uncertainty in a robust manner, the whole reservoir modelling workflow, from 
geological model construction and history matching to forecast, was developed using statistical 
ensemble based methodologies. In this framework, multiple static and dynamic models were realized 
integrating all the new data. Secondly, a multiple history matching was achieved using the EnKF 
approach. Finally, a polymer optimization on the multiple history matched models was performed to 
define the development strategy. This process, where production data are first assimilated and then 
engineering controllable parameters are optimised, may be seen as the first iteration of Closed Loop 
Reservoir Management as presented in various papers these years, [16].  Then this work will also be 
used as building block for the reservoir management of the field, with integration of process 
monitoring and optimisation.    
 
Geological and dynamical description of the sector model 

The sector model was based on a fine grid and a detailed vertical layering. New property distributions 
and new relative permeability curves were adopted integrating the latest laboratory measurements. 
CPI data were used to define NTG, porosity and irreducible water saturation modelling. The pay 
intervals were identified in the wells log using a porosity cut-off of 8% (from the full-field model). 
The resulting sand-flag was scaled-up in the 3D grid taking into account possible shoulder effects and 
small mismatches between well tops and logs. A variographical analysis carried out for each zone, 
showed that the database was suited to use the Sequential Gaussian simulation algorithm (SGSim, 
[11]) to propagate the NTG values all over the reservoir using seismic/sedimentological derived trend 
maps. Comparison between porosity and NTG data showed a poor correlation thus porosity was 
distributed using SGSim with different trends maps. Clear correlation existed between porosity and 
irreducible water saturation so a deterministic function was used to distribute saturation values.  
Taking into account also data from the new cored well, a new relationship between horizontal log-
permeability (Ln-K) and porosity was determined. Using this relationship, Ln-K trend maps were 
computed from the porosity trends, then Ln-K was distributed using collocated Co-Kriging simulation 
with a correlation coefficient of 0.8. A deterministic function was used to compute vertical 
permeability from horizontal permeability.   
 
The main characteristics of the sector model are the following: 

• Areal dimensions: 5 km long x 4.5 km wide 
• Average cell dimensions: 50 m x 50 m 
• Active cells: 51168 cells  
• Number of layers: 8  

 
Purposely, the same simulation grid was used also for the simulation phase to avoid any error due to 
upscaling and to make easier a consistent update of the geological properties in the history matching 
phase. 
 
Special Core Analysis (SCAL) were performed on plugs of the new core, namely: Amott wettability, 
water-oil relative permeability curves and capillary pressure. The results were not fully reliable, see 
Figure 2. Indeed, irreducible water saturation lower than 0.25 is associated to oil wettability, but the 
saturation cross point around 50% indicates mixed wettability and low water endpoint (Krwr) is 
typical of  a water wet system, [22].  
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For these reasons, Krwr was considered as uncertain and tuning parameter during the history matching 
process. 
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Figure 2 Normalised water-oil relative permeability curves for different samples. 

 
The pilot area comprises a total of 22 drilled wells, some of which are commingled with other 
reservoirs in the field. The absence of PLTs and back allocated data for these commingled wells 
imposed to retrieve production data from the original full field model. This process involved the 

evaluation of the liquid fraction LIQf  (i.e. ratio between the simulated liquid production of the pilot 

area divided by the total simulated liquid rate): 
 
 
 
 
 
 
This quantity allowed to rescale the historical production data of a well with respect to the portion due 
to the pilot area contribution. As a consequence, high uncertainty was associated to such data during 
the history match process. 
The geology of the pilot area is characterized by a major fault system in the NNW-SSE direction with 
high displacements as showed in Figure 3. Along that system, different reservoirs may communicate 
due to the high fault throws.  
 

MAIN FAULT SYSTEM in Pilot Area

 
 
Figure 3 Main faults system for the pilot area: the arrows highlight the connections between the pilot 

area and the rest of the reservoir. 
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In particular, the pilot area communicates with reservoirs in Zone II, Zone III and Zone IV. Indeed, 
pressures of dedicated wells P2 and P7 are supported by the water injection in Zone II and Zone IV, 
as highlighted in Figure 4. 

Well P7 Well P2

2nd re-pressurization

2nd re-pressurization1st stabilization

 
Figure 4 Historical pressure data for two producers perforated only in the pilot area. 

 
In order to mimic the flow interaction between the pilot area and the rest of the field, dummy wells 
were introduced. 
 

• 4 dummy water injectors were used to simulate the historical flow interaction with Zone III 
and Zone IV before water injection start up in April 2003. The pilot area historically recorded 
lower pressure respect to other reservoirs. Therefore, dummy water injectors were introduced 
to mimic the water flux coming into the area, see Figure 5. These wells were simulated under 
water rate controls.  

 

 
Figure 5 Dummy water injectors in the sector model. 

 
• 3 dummy water producers were add to correctly manage the re-pressurization of the pilot area 

after the water injection start up in April 2003 when the average pressure of the pilot area 
started to be higher with respect to other reservoirs. These wells were simulated under 
bottom-hole pressure controls, Figure 6. 
 

.  
 

Figure 6 Dummy water producers in the sector model. 
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Introduction to the Ensemble Kalman Filter (EnKF) 

The Ensemble Kalman Filter (EnKF) is a Monte Carlo data assimilation technique for high 
dimensional problems. In the last years, the method has become a popular approach in reservoir 
simulation community for history matching and application on real cases have been published, [1], 
[3], [9], [19]. 
There are three basic steps in the EnKF algorithm. 
  

1. Generation of the initial ensemble: an ensemble of reservoir models is generated according to 
the prior uncertainty varying geological and/or dynamic parameters with geostatistics and/or 
Monte Carlo sampling.  

2. Forecast step: the models of the ensemble are simulated in time using the flow simulator 
(Eclipse). 

3. Assimilation (or Update) step: when measurements are available, the models are updated to 
integrate data using an error minimizing scheme. The assimilation step is a correction step to 
honour the observations. 

 
The initial ensemble is created only at the beginning, forward and assimilation steps are continuously 
alternated until the end of the flow simulation.  
In general, in the EnKF the state variable y , describing the reservoir model includes 3 types of 

parameters: static parameters sm  (e.g. porosity or permeability), dynamic parameters dm  (e.g. 

pressures and saturations) and production data d  (e.g. wells rates, wells pressures) i.e. 
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The ensemble of models is then represented by an ensemble of state vectors { } eN

jjk 1, =
y  where j  is the 

index that identifies the model in the ensemble, k  is the time step index of the flow simulation. The 
ensemble of state vectors is continuously updated at each flow simulation step where measurements 
are available. In particular, during the forward step, the flow simulation is run on each reservoir model 
(i.e. state vector):  
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where F  is the forward model and superscript f denotes the forecast, meaning that the values are 
output from the simulator before Kalman filter updating. In this step, only the dynamic variables are 
modified since the models evolve in time. Then the assimilation step is performed: here the state 
vectors are updated using the following update equation: 
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The matrix kH  selects the simulated data from the state vector. The matrix kK  is called Kalman gain 

matrix and is given by 
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where f
k,yC is the covariance matrix for the state variables computed directly from the ensemble of 

forecasted results { } eN

j

f
jk 1, =

y with the standard statistical formula i.e. 
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The vector obs
jk ,d  is a vector that contains observed production data perturbed with random 

measurement error jε  sampled from a normal distribution ),( dC0N with a diagonal positive definite 

matrix dC : j
obs
k

obs
jk εdd +=, . With the update equation, both static variables and dynamic variables 

are modified based on the Kalman Gain multiplied by the data misfit (difference between observed 
data and simulated data).  
In Figure 7, the typical EnKF workflow between two consecutive time steps is illustrated.  
In terms of implementation, the cost of the updating is negligible compared to the cost of the flow 
simulation. In addition, because of the restarting capabilities of the flow simulator, after each 
assimilation step, the flow simulation can be restarted from the correspondent time step. Therefore, 
the final cost of the workflow is equivalent to the cost of one flow simulation for each realization.  
However, there are some limitations in the use of the EnKF. In particular, it can be proven that the 
EnKF updating is exact only for linear dynamics and Gaussian assumption and with an infinite 
ensemble size, [5], [17]. On the basis of this, in the standard EnKF practice, the parameters of the 
final ensemble are rerun from the beginning of the flow simulation to guarantee the final consistency 
in terms of pressure and saturations.  
 
 

FORECAST 
Reservoir simulator

ANALYSIS
Updating each ensemble member

ensemble
members

Analysis

data

Integration

 
Figure 7 EnKF workflow. 
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Implementation of EnKF to history match the pilot area 

In this work, the initial ensemble was generated according to the model uncertainty highlighted during 
the reservoir study. In particular, the following uncertainty parameters were chosen: 
 

• Net To Gross (NTG) 
• Porosity  
• Permeability (Ln-K)  
• Irreducible water saturation 
• Relative permeability  
• Fault transmissibility 

 
NTG, porosity and permeability are spatial variables distributed in the reservoir grid with 
geostatistics. In order to build the ensemble, multiple geostatistical simulations were generated 
following the geological workflow. Therefore, the final realizations were constrained to all the data 
(core data, seismic/sedimentological trends, correlations, etc.). 
The other uncertain parameters in the ensemble are scalar ones thus Monte-Carlo sampling was used 
to generate multiple values. In particular, the relative permeability end-points (Krwr) were varied 
sampling uniformly the values within the interval [0.3 0.5].   
Uncertainty on fault transmissibility, due to structure uncertainty, was considered after a sensitivity 
analysis highlighted their impact on well connectivity. In particular, 5 main faults were considered as 
critical to achieve the history match, see Figure 8. These main faults were connected by means of 
Non-Neighbour Connections (NNC) and the correspondent transmissibility was considered a history 
matching parameter. In conclusion, the fault parameters used in the ensemble are 5 scalar values 
sampled within the interval [0 2] that are used as exponents to vary the transmissibility of the 5 NNC 
between [1 10^2].  
 
An initial ensemble of 100 realizations of spatial and scalar parameters was generated. 
 

 
Figure 8 Five main faults selected as history matching parameters. 

 
The EnKF was used to match the wells (6 producers and 2 injectors) strictly dedicated to the pilot area 
and the dummy injectors.  
In particular, the following measurements were considered: 
 

• Producers: shut-in pressures, oil, water and liquid rates; 
• Injectors: shut-in pressures, injection rates; 
• Dummy injectors: injection rates. 
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The production and injection controls are produced liquid rates and water injection rates. The 
following measurement errors were used for the EnKF assimilation steps: 
 

• Oil rate: 0.08% 
• Water rate: 0.15% 
• Liquid rate: 1 stb/day 
• Injection rate: 50 stb/day 
• Shut-in pressure: 10 barsa 

 
 
For computational efficiency, the EnKF was not activated at each time step, but data were assimilated 
only when shut-in pressure measurements were available: in total 42 assimilation time steps were 
implemented.  
 
Localization strategy 

EnKF updating is based on the Kalman gain matrix that contains correlations between simulated data 
and model parameters. The increasing of the ensemble size improves the estimation of the covariance 
and consequently the performance of the filter, [2], [15]. In large scale problems, the number of 
parameters is very large while the size of the ensemble is limited by computational reasons and only 
small ensemble can be used. In this case, correlations are well estimated only close to the conditioning 
data; far from observations, because of sampling error, correlations are meaningless or “spurious” in 
EnKF jargon. The problem of spurious correlations can severely deteriorate the quality and reliability 
of the results. In order to remove the effect of spurious correlations, a localization technique can be 
used, [2], [14], [15]. The main idea of localization is that the correlation between parameters and 
observations too far from each other should be equal to zero. There are different localization 
techniques, [14]. In our case, a localization based on a distance function ρ  was used as proposed by 

Furrer and Bengtsson, [7], [14]. In particular, ρ  is defined as:  
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where (.)f  is a covariance function, s  is the separation distance for the covariance function and eN  

is the ensemble size (the larger the ensemble the larger the range of the localization function). A 
spherical covariance function was applied to represent the cross-covariance between data and state 
variable. The function is a tapered function equal to one close at the observation location, it has a 
relatively flat plateau and it drops to zero rapidly as the distance from observation goes beyond the 
range. When localization function is used, during the updated step, the Kalman gain is premultiplied 
by the function ρ  using the Schur product i.e. 
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In this work, different function ranges and anisotropies were used according to the wells, the type of 
measurements and the time steps. For example, Figure 9 shows the Kalman gain weights that were 
used to update the permeability (Ln-K) at the assimilation step 22 when shut-in pressure for injection 
well I2 was integrated. Indeed, the bottom-hole pressure match is mainly sensitive to the geological 
characteristics inside the drainage area; therefore an isotropic localization region around the well was 
selected. The localized Kalman gain was obtained by the product of the sensitivity region with the 
original Kalman gain. Another example of localization is shown in Figure 10. In this case, we show 
the Kalman gain for Ln-k at the assimilation step 27 when produced water rates for the well P5 was  
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assimilated. Since, according to the reservoir interpretation, the produced water derives from the near 
water injector I2, a sensitivity region that includes the couple producer-injector was drawn.  
 
 

Kalman gain weights 
for permeability in layer 5

= *

Localization regionLocalized Kalman gain 

 
Figure 9 Localized Kalman gain for assimilation of BHP of the water injector is the product between 

the Kalman gain and the localization region function. 

 
 

Kalman gain weights 
for permeability in layer 5 Localization regionLocalized Kalman gain 

= *

 

Figure 10 Localized Kalman gain for the assimilation of produced water of the oil producer is the 
product between the Kalman gain and the localization region function. 

 
 

History match results 

The final history match results for the key wells are reported from Figure 11 to Figure 13. In these 
plots, the grey lines represent the simulation results of the prior ensemble (before the assimilation). 
The coloured lines indicate the simulation results of the posterior ensemble. Observed data are the 
black stars. It is interesting to note that the spread of the final realizations is reduced where 
measurements come available, while the initial range is well maintained where there is lack of 
information. In conclusion, a good quality history match was obtained. 
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Figure 11 History match results for Producer P6. 

 

 
Figure 12 History match results for Producer P4. 
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Figure 13 History match results for Water Injector I2. 
 

Properties update with EnKF 

In order to evaluate the history match quality, a final check on the updated reservoir properties was 
performed. The initial and final mean of the ensemble for Ln-K and the corresponding standard 
deviation respectively before and after the EnKF update are reported in Figure 14. The final 
permeability map is in line with the geological interpretation. As expected, there was a general 
reduction of uncertainty after the EnKF integration. However, the uncertainty range of the final 
ensemble is well maintained also thanks to the localization strategy. Figure 15 shows the correlation 
between porosity and LnK in one of the main layer for the initial (blue) and final (red) ensemble: the 
correlation is preserved even after the EnKF assimilation. In conclusion, the final petrophysical 
properties are consistent to the geological framework. 
 

Initial average Lnk map - layer 5 Final average Lnk map - layer 5

Initial std Lnk - layer 5 Final std LnK map - layer 5

 
Figure 14 Initial and final ensemble mean and standard deviation Ln-K map for layer 5. 
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Figure 15 Porosity-permeability relationship in layer 5 of the initial (blue) and final (red) ensemble. 

 
 
The boxplot of the distribution of water relative permeability at the critical oil saturation (Krwr) at the 
different assimilation steps is reported in Figure 16. The EnKF has no influence in the parameter 
update until the water injection start up (assimilation step 30). From that moment on, the EnKF 
increases the Krwr values. The final average Krwr value is about 0.45 in line with the expectations for 
a mixed wettability environment, [22].  
 
Moreover, the EnKF update for the transmissibility of two main faults is represented in Figure 17 and 
Figure 18. The EnKF gave a clear indication about the sealing capacity of fault 1 (indicated in green 
in Figure 8) and the transmissibility of fault 4 (indicated in black in Figure 8) in order to improve the 
history match quality. The EnKF did not show relevant effects on other faults.  
 

 
Figure 16 Box plot of Krwr distribution at each assimilation step. 

 

 
Figure 17 Box plot of transmissibility distribution for the fault 1 at each assimilation step. 
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Figure 18 Box plot of transmissibility distribution for the fault 4 at each assimilation step. 

 
Optimization of polymer injector location 

Moving from history matching to production forecast, a screening analysis was the first step to 
identify the optimal position of the injection well for a disperse water-polymer injection scheme pilot. 
In order to take into account the uncertainty coming from different geological models, the screening 
was performed considering the average oil saturation map of the ensemble at the end of the historical 
production period.   
In literature, successful polymer projects are associated to disperse injection in reservoirs with high oil 
saturation and low actual recovery, [21], [18], [10], [20], [12]. These conditions could be found in the 
eastern flank of the pilot area, characterised by low water saturation as demonstrated by the average 
oil saturation map of the ensemble after history matching, see Figure 19.   
 

Polymer injection area
• Low water saturation
• Monitoring producers  
near injector

Optimal polymer injector location

 
 
Figure 19 Polymer injector optimal location determined based on the average oil saturation map of 

the ensemble.  
 
The location shown in the picture allows injecting in an unswept area, with the possibility to sweep 
the drainage area of seven existing wells, producing with water-cut ranging between 0% and 60%.  
In the remaining of the paper, these seven surrounding producers will be considered as target wells for 
the development strategy optimization. Therefore, all the production profiles presented later on are the 
sum of each single target well profile. 
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According to the polymer flood model, the reservoir simulator has been tuned according to the results 
of the laboratories analysis [3]. 
 
In addition, the hydraulic communication of the pilot area with other reservoirs calls for a perfect 
coupling between the EOR and the full field development strategy. The polymer flooding was 
evaluated over the next 10 years forecast. In this time lapse, according to the full field development 
strategy, the average pressure of the pilot area is expected to be maintained higher than other 
reservoirs. This condition is guaranteed by the presence of calibrated dummy water producers.  
 
Ensemble based optimization of polymer development strategy 

Once the injector location was selected using a standard polymer strategy, a detailed optimization of 
the polymer development strategy was performed. 
The starting point was the ensemble of sector models constrained to geological and production data 
obtained with the EnKF, which represents the uncertainty in the field at the state of art. Including all 
the alternative geological realizations in a manually optimized development plan would have been 
unfeasible. On the other side, optimizing a single reference model would have created a major risk of 
underestimating uncertainty. Therefore, an ensemble based optimization technique (EnOpt) was 
implemented, [6], [7], [7].  
EnOpt uses the steepest ascent method to maximise an objective function g  by approximating the  

sensitivity of g  with respect to the optimization variables with averages computed on the basis of 
coupled ensemble of controls (optimization parameters) and geological models. In particular, EnOpt 
starts with the definition of the base development strategy, the control variables (

cNxxx ,,, 21  ) and 

the objective of the optimization g .  Examples of typical controls variables for polymer flooding are 
injection rates and polymer concentrations. The objective is generally the maximization of the Net 
Present Value (NPV). Once controls and objective are defined, EnOpt creates the coupled ensemble 
of controls and geological models. This ensemble is generated by perturbing the control variables 
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• Compute gradients – The output from the ensemble of models is used to approximate 
gradients to the control variables:  
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• Update controls - Using gradient, the ensemble of controls is updated with 

 xx +=+ g
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1  where α  is a tuning parameter that determines the step size in the 

steepest ascent direction.  
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• Run flow simulation and compute objective function – Flow simulation is run on each member 
of the updated ensemble and the objective function )( 1+xg  are computed.  

 
• Check objective function - If )()( 1  xx gg >+ , overwrite 1+x by x  and let 1+=  , 

otherwise keep x , increase α  and continue the loop. 

 
The loop continues till some stopping criteria on percentage increment of the objective function are 
met.  
 
In the above procedure, the update is addressed only to the ensemble of controls while the ensemble 

of geological models { } eN

j

u
j 1=

y  is fixed. However, coupling the ensemble of controls with the ensemble 

of geological models allows performing a “robust” optimization on the expected value over all the 
realizations taking into account the remaining geological uncertainty of the matched models. EnOpt 
can be also integrated in a more general closed-loop framework of data assimilation and production 
optimization, [6], [7], [7].    
 
Base case development strategy and EnOpt implementation in the sector model 

The forecast scenario was evaluated over a period of 10 years. Generally the base development 
strategy for a polymer injection consists of an initial short water injection pre-flush followed by 
multiple polymer slugs at different concentrations. A final water flooding can be used to push the 
polymer slugs towards the surrounding producers improving the mobility ratio and saving on the 
polymer cost. 
In this paper, after 3 months of water pre-flush, three different polymer slugs were optimized followed 
by a final water injection until the end of the forecast simulation.  
The polymer development strategy was optimized choosing as control variables the polymer 
concentrations and the time length of each of the three slugs:  
 

                      ).,,,,,( 332211 tstepconctstepconctstepconc=x                            

 
The polymer injector is under BHP control.  
The controls variables were perturbed within specified ranges to create the control ensemble with 100 
members.  
The objective function was set to maximize the average NPV over the entire ensemble at the end of 
the forecast period: 
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where i  is the time step index, tN  is the total number of time steps, Tr  is the discount rate for the 

reference time interval T and it  is the cumulative time since the start of production. op , wp  and 

pp are the price of oil, the cost of water disposal and the cost of the polymer, respectively. oQ  and 

wQ  are the total oil and water production over time step tΔ  of  the wells close to the polymer injector 

and pQ is the total polymer injected over tΔ .  
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In our specific case the reference values are: 
 

• Oil price = 90 $/barrel; 
• Produced water cost = 1 $/barrel; 
• Polymer cost = 4.25 $/Kg; 
• CAPital EXpenditure (CAPEX) (including the drilling of the new injector and the additional 

surface facilities for the polymer treatment) = 9.6*10^6 $; 
• Discount rate = 10%. 

 
In our case, the range of variability of the final cumulative oil rising from the 100 geological models 
was very large and strongly dependent on the petrophysical properties. Therefore, coupling the 
ensemble of controls with all the geological realizations made the gradient computation difficult to be 

correctly executed. In order to avoid this problem, only 5 realizations { } 5,,1=r
u
ry  were selected to be 

coupled with the ensemble of 100 engineering controls. In particular, it is worth to indicate with  
 

{ } e

j

N

jj
u
r x

1,,
=y  the coupled ensemble where jr  varies repetitive from 1 to 5 (so each realization is 

coupled with 20 perturbed controls). The 5 realizations were selected in order to represent the range of 
variability of oil in place over all the different geological models. During the EnOpt loop, after 
running the flow simulation for the 100 reservoir models, the gradient was computed in two steps:  

 
• First, the ensemble was divided in 5 (based on the realization number) and 5 separate 

gradients 
rgC were computed with the EnOpt formula: 
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• Then, the final gradient was calculated as sum of the partial gradients 
=

=
5

1r
gg r

CC  

Using this procedure, the difficulties in the gradient computation were overcome and the different 
scale of variability of the objective function were correctly captured. Moreover, the final gradient has 
demonstrated to be able to move the whole ensemble towards optimal values.  
 
Optimization results in the sector model 

Figure 20 shows the trend of the average NPV after 30 optimization iterations. As it can be observed, 
the trend is monotonically increasing with a steeper slope at the beginning while at the end the 
optimization starts to converge.  
In order to validate the results, the optimized controls were applied over the 100 reservoir models and 
the results compared to the do-nothing scenario and to an equivalent water injection scenario. Finally, 
statistics concerning P10, P50, and P90 profiles were analyzed. 
Figure 21 shows the P50 profile for the oil rate of the target wells regarding the do-nothing, the water 
injection and the optimized polymer scenarios. The optimization strategy is also illustrated: after an 
initial short water pre-flush, a first polymer slug with relatively low viscosity (3cP) is injected 
followed by a higher viscosity slug (6.5cP). In the end, the polymer is pushed towards the surrounding 
producers by water flooding. As expected, the polymer injection gives a benefit in terms of P50 oil 
rate with respect to the other scenarios. In terms of cumulative oil production, the water injection is 
supposed to give an average incremental recovery of 10% compared to the do-nothing case. However, 
the optimized polymer injection is expected to increment the average recovery by 16%, see Figure 22. 
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Moreover, the polymer strategy reduces the produced water by 11%, Figure 23. The results are 
summarized in Figure 24.  

 
Figure 20 EnOpt optimization: average NPV versus iterations. 

 
 
 
 
 

P50 profiles

1st Polymer slug
viscosity 3 cP 

Initial water 
pre-flush

2nd Polymer slug
viscosity 6.5 cp Driving water 

injection

 
Figure 21 Oil production rate of target wells: p50 of do-nothing (black), water injection (blue), 

optimized (red) scenarios. 
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P50 profiles Polymer injection average 
incremental recovery equal to 16%

Water injection average 
incremental recovery equal to 10%

 
Figure 22 Cumulative oil production rate of target wells: p50 of do-nothing (black), water injection 

(blue), optimized (red) scenarios. 
 

 

P50 profiles Produced water is reduced of 
11% using polymer respect to the 

water injection scenario

 
Figure 23 Cumulative water production rate of target wells: p50 of do-nothing (black), water 

injection (blue), optimized (red) scenarios. 
 
 

Development
scenario

Additional Oil 
Production at 
2023 (P50)

Additional 
technical NPV 
at 2023 (P50)

% %

Actual - -

Water Inj. + 10 % + 3 %

Polymer Inj. + 16 % + 8 %
 

Figure 24 EnOpt optimization: results summary compared to the do-nothing scenario. 
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Conclusions 

Multiple high resolution sector models were built integrating all the available data and taking into 
account geological and dynamical uncertainties. First, the ensemble of models were history matched 
using the Ensemble Kalman filter technique. Secondly, the matched ensemble were used to optimize 
both the polymer injector location and the development strategy. The following conclusions can be 
drawn. 
 

• Production data for wells in commingle were retrieved using the full field model and the 
hydraulic communication with other reservoirs was managed through the introduction of 
dummy wells. 

• Multiple geological and dynamic models were realized honouring all the available data 
(including the new RCAL and SCAL) to represent the uncertainty of the reservoir. 

• Using the EnKF, a good quality history match for the 100 alternative reservoir models was 
achieved. The geological coherence was maintained without any manual modifications. 
Therefore, the ensemble of matched models represents a valid starting point to evaluate the 
range in forecast production. 

• A robust optimization of the polymer development strategy was performed using the EnOpt 
approach.  

• The polymer flooding confirmed to be a cost-effective EOR technique for the field. The 
optimized development strategy foresees to obtain an improvement of the average cumulative 
oil production of 16% in ten year time. Moreover, an increment of 8% is expected in terms of 
average NPV. 

• A closed loop workflow was applied to manage multiple models both for history matching 
and production forecast optimization. 
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