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Motivation

I There exist several algorithms for conditioning a model to data, s.a.
EnKF, RML, ES, EnRML, MDA,...

I All methods generate approximate samples from the same
distribution

I Methods sample correctly for linear problems
I Methods give different results for non-linear problems

I Differences between methods are defined by some key characteristics
I Focus on: Sequential vs. simultaneous assimilation of data for

updating static parameters



Motivation

I Formal Bayesian expression
I Seq. data assimilation = sim. data assimilation

I Approximate methods

I Linear forward models: seq. data assimilation = sim. data
assimilation

I Non-linear forward models: seq. data assimilation 6= sim. data
assimilation
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Analytical strategy

Goal: Understand the importance of seq. and sim. assimilation when
combining data with different degrees of non-linearity

I Note: Analytical result exist for seq. vs sim. RML with linear data
I Strategy:

I Define comparable variants of seq./sim. RML and EnKF/ES
I Analyze differences between the methods
I Extend linear RML result to new RML variants for combination of

linear and non-linear data
I Extend linear RML result for variants of EnKF/ES
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Characteristics & Algorithms

I Define variants of EnKF and the RML method
I Remove impact of other characteristics than seq./sim. by ensuring

1. Updates based on ensemble
2. Perform one complete run
3. Focus on static parameters

I Choose versions of RML and EnKF honoring 1-3
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I EnKF honors
I Point 1: Updates based on ensemble
I Point 2: Perform one complete run

I EnKF does not honor

I Point 3: Focus on static parameters

I Solution

I Restart from initial time after each assimilation
I EnKF → Half-iterative EnKS (Hi-EnKS)

I If data are assimilated simultaneously: Hi-EnKS → ES
I Hi-EnKS: sequential scheme honoring 1-3
I ES: simultaneous scheme honoring 1-3
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I RML honors
I Point 3: Focus on static parameters

I RML does not honor

I Point 1: Updates based on ensemble
I Point 2: Perform one complete run

I Solution

I EnRML updates using an ensemble approximation to gradient: RML
→ EnRML

I Minimize utilizing one full Gauss-Newton step: EnRML
→GN-EnRML

I Sim. GN-EnRML: Simultaneous scheme honoring 1-3
I Seq. GN-EnRML: Sequential scheme honoring 1-3
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Comparing Hi-EnKS & GN-EnRML

I GN-EnRML update:
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I CmG̃T = C̃mg
I G̃CmG̃T = C̃ gg
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Comparing Hi-EnKS & GN-EnRML
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determined by
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Sequential & Simultaneous assimilation (GN-EnRML)

I Utilizing seq./sim. GN-EnRML extend linear RML result for
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Ne−1∆m∆mT

Hi-EnKS = GN-EnRML

I Seq. GN-EnRML updated covariance as:
C a

m = C f
m − C f

mGT
[
GC f

mGT + Cd
]−1 GC f

m

I Need: Ne →∞ for C a
m = C̃m

I GN-EnRML 6= Hi-EnKS

I Difference between methods depend on non-linearity

I Perform numerical studies for Hi-EnKS with weakly non-linear data
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Numerical studies

I Difference between Hi-EnKS and GN-EnRML varies with ∆e
I Numerical study to investigate:

I Optimal assimilation strategy
I GN-EnRML result valid for Hi-EnKS

I Numerical experiments
I Univariate:

I Simple forward model
I One linear data group
I One non-linear data group

I Multivariate
I 1D Reservoir
I One weakly non-linear data group
I One data group with stronger non-linearity

I Assess quality of Hi-EnKS/ES by Kullback-Leibler Divergence (KLD)
to McMC samples

I Nearest Neighbor kernel density estimator
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Univariate example

I Simple forward model�� ��di = mri

I Assimilate d1 → d2 and d2 → d1 with Hi-EnKS, and assimilate
simultaneously with ES

mref 3 r1 1 Ensemble size 1× 105

Prior mean 8 r2 2 McMC iterations 1× 105

Prior Var 1 σ2
d1/2

0.1 McMC acceptance rate 0.2267

Table: Numerical details



Univariate example
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Table: Univariate results
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Multivariate example

I 1D reservoir consisting of 31 unknown parameters
I Two data groups

I d1 : 6 measurements of log(perm) field. Measurements made at wells
marked Hard obs�� ��d1 = log(perm)1.2

I d2 : 6 pressure observations, made at a single well marked Pres obs

1

Inj

Hard obs

2 · · · 6 7

Hard obs

8 · · · 12 13

Hard obs

14 15 16

Pres obs

17 18 19

Hard obs

20 · · · 24 25

Hard obs

26 · · · 30 31

Prod

Hard obs

Figure: Grid blocks & well placement



Multivariate example
Ensemble size 5× 104

McMC proposals 5× 105

McMC acceptance rate 0.238

Table: Numerical details
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Figure: Mean values



Multivariate example
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Hi-EnKS d1 → d2 Hi-EnKS d2 → d1 ES

Figure: KLD

KLDd1→d2 0.48
KLDd2→d1 1.58
KLDES 1.66

Table: Multivariate results



Conclusions

Analysis shows:
I GN-EnRML: seq. = sim. for non-linear data before linear data
I For Ne ≤ Nm ∧ C̃m = 1

Ne−1∆m∆mT : GN-EnRML = Hi-EnKS
I For Ne > Nm: (GN-EnRML - Hi-EnKS) ∝ ∆e

Numerical experiments show:
I Hi-EnKS: seq. = sim. non-linear data before linear data
I Data with weakest non-linearity first:

I Best univariate and multivariate mean
I Best univariate and multivariate KLD
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Thank you


