Aspects of sequential and simultaneous assimilation

May 29, 2013

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- There exist several algorithms for conditioning a model to data, s.a. EnKF, RML, ES, EnRML, MDA,...
- All methods generate approximate samples from the same distribution
 - Methods sample correctly for linear problems
 - Methods give different results for non-linear problems
- Differences between methods are defined by some key characteristics

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 Focus on: Sequential vs. simultaneous assimilation of data for updating static parameters

- ► Formal Bayesian expression
 - Seq. data assimilation = sim. data assimilation

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

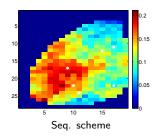
- Formal Bayesian expression
 - Seq. data assimilation = sim. data assimilation
- Approximate methods
 - Linear forward models: seq. data assimilation = sim. data assimilation

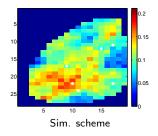
(ロ)、

- Formal Bayesian expression
 - Seq. data assimilation = sim. data assimilation
- Approximate methods
 - Linear forward models: seq. data assimilation = sim. data assimilation
 - \blacktriangleright Non-linear forward models: seq. data assimilation \neq sim. data assimilation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Formal Bayesian expression
 - Seq. data assimilation = sim. data assimilation
- Approximate methods
 - Linear forward models: seq. data assimilation = sim. data assimilation
 - \blacktriangleright Non-linear forward models: seq. data assimilation \neq sim. data assimilation





・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▶ Note: Analytical result exist for seq. vs sim. RML with linear data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note: Analytical result exist for seq. vs sim. RML with linear data
 Strategy:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- \blacktriangleright Note: Analytical result exist for seq. vs sim. RML with linear data
- Strategy:
 - Define comparable variants of seq./sim. RML and EnKF/ES

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ▶ Note: Analytical result exist for seq. vs sim. RML with linear data
- Strategy:
 - Define comparable variants of seq./sim. RML and EnKF/ES

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Analyze differences between the methods

- ▶ Note: Analytical result exist for seq. vs sim. RML with linear data
- Strategy:
 - Define comparable variants of seq./sim. RML and EnKF/ES
 - Analyze differences between the methods
 - Extend linear RML result to new RML variants for combination of linear and non-linear data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Note: Analytical result exist for seq. vs sim. RML with linear data
- Strategy:
 - Define comparable variants of seq./sim. RML and EnKF/ES
 - Analyze differences between the methods
 - Extend linear RML result to new RML variants for combination of linear and non-linear data

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Extend linear RML result for variants of EnKF/ES

- ▶ Note: Analytical result exist for seq. vs sim. RML with linear data
- Strategy:
 - Define comparable variants of seq./sim. RML and EnKF/ES
 - Analyze differences between the methods
 - Extend linear RML result to new RML variants for combination of linear and non-linear data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

► Extend linear RML result for variants of EnKF/ES

- Define variants of EnKF and the RML method
- Remove impact of other characteristics than seq./sim. by ensuring

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. Updates based on ensemble
- 2. Perform one complete run
- 3. Focus on static parameters
- Choose versions of RML and EnKF honoring 1-3

EnKF honors

Point 1: Updates based on ensemble

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Point 2: Perform one complete run

EnKF honors

- Point 1: Updates based on ensemble
- Point 2: Perform one complete run
- EnKF does not honor
 - Point 3: Focus on static parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EnKF honors

- Point 1: Updates based on ensemble
- Point 2: Perform one complete run
- EnKF does not honor
 - Point 3: Focus on static parameters
- Solution
 - Restart from initial time after each assimilation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

EnKF honors

- Point 1: Updates based on ensemble
- Point 2: Perform one complete run
- EnKF does not honor
 - Point 3: Focus on static parameters
- Solution
 - Restart from initial time after each assimilation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• EnKF \rightarrow Half-iterative EnKS (Hi-EnKS)

EnKF honors

- Point 1: Updates based on ensemble
- Point 2: Perform one complete run
- EnKF does not honor
 - Point 3: Focus on static parameters
- Solution
 - Restart from initial time after each assimilation
 - EnKF \rightarrow Half-iterative EnKS (Hi-EnKS)
- \blacktriangleright If data are assimilated simultaneously: Hi-EnKS \rightarrow ES

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

EnKF honors

- Point 1: Updates based on ensemble
- Point 2: Perform one complete run
- EnKF does not honor
 - Point 3: Focus on static parameters
- Solution
 - Restart from initial time after each assimilation
 - EnKF \rightarrow Half-iterative EnKS (Hi-EnKS)
- \blacktriangleright If data are assimilated simultaneously: Hi-EnKS \rightarrow ES

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- ► Hi-EnKS: sequential scheme honoring 1-3
- ES: simultaneous scheme honoring 1-3

RML honors

Point 3: Focus on static parameters

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

RML honors

- Point 3: Focus on static parameters
- RML does not honor
 - Point 1: Updates based on ensemble

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- RML honors
 - Point 3: Focus on static parameters
- RML does not honor
 - Point 1: Updates based on ensemble
- Solution
 - \blacktriangleright EnRML updates using an ensemble approximation to gradient: RML \rightarrow EnRML

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- RML honors
 - Point 3: Focus on static parameters
- RML does not honor
 - Point 1: Updates based on ensemble
 - Point 2: Perform one complete run
- Solution
 - \blacktriangleright EnRML updates using an ensemble approximation to gradient: RML \rightarrow EnRML

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- RML honors
 - Point 3: Focus on static parameters
- RML does not honor
 - Point 1: Updates based on ensemble
 - Point 2: Perform one complete run
- Solution
 - $\blacktriangleright\,$ EnRML updates using an ensemble approximation to gradient: RML $\rightarrow\,$ EnRML

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

► Minimize utilizing one full Gauss-Newton step: EnRML →GN-EnRML

RML honors

- Point 3: Focus on static parameters
- RML does not honor
 - Point 1: Updates based on ensemble
 - Point 2: Perform one complete run
- Solution
 - \blacktriangleright EnRML updates using an ensemble approximation to gradient: RML \rightarrow EnRML

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Minimize utilizing one full Gauss-Newton step: EnRML →GN-EnRML
- Sim. GN-EnRML: Simultaneous scheme honoring 1-3
- Seq. GN-EnRML: Sequential scheme honoring 1-3

- ▶ Note: Analytical result exist for seq. vs sim. RML with linear data
- Strategy:
 - ► Define comparable variants of seq./sim. RML and EnKF/ES
 - Analyze differences between the methods
 - Extend linear RML result to new RML variants for combination of linear and non-linear data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Extend linear RML result for variants of EnKF/ES

► GN-EnRML update:

$$m_{j}^{a} = m_{j}^{f} + C_{m}\tilde{G}^{T}\left[\tilde{G}C_{m}\tilde{G}^{T} + C_{d}\right]^{-1}\left(d_{j} - g\left(m_{j}^{f}\right)\right)$$

Hi-EnKS parameter update

$$m_{j}^{a} = m_{j}^{f} + \tilde{C}_{mg} \left[\tilde{C}_{gg} + C_{d} \right]^{-1} \left(d_{j} - g \left(m_{j}^{f} \right) \right)$$

GN-EnRML update:

$$m_{j}^{a} = m_{j}^{f} + C_{m}\tilde{G}^{T}\left[\tilde{G}C_{m}\tilde{G}^{T} + C_{d}\right]^{-1}\left(d_{j} - g\left(m_{j}^{f}\right)\right)$$

Hi-EnKS parameter update

$$m_{j}^{a} = m_{j}^{f} + \tilde{C}_{mg} \left[\tilde{C}_{gg} + C_{d} \right]^{-1} \left(d_{j} - g \left(m_{j}^{f} \right) \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ The two methods are equal if

•
$$C_m \tilde{G}^T = \tilde{C}_{mg}$$

• $\tilde{G} C_m \tilde{G}^T = \tilde{C}_{gg}$

$$ilde{C}_m ilde{G}^{\, au} = ilde{C}_{mg}$$

Ensemble gradient given by the pseudo inverse

$$ilde{G}=\Delta d\Delta m^{\dagger}$$

Ensemble covariance

$$\tilde{C}_m = \frac{1}{N_e - 1} \Delta m \Delta m^T$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$ilde{C}_m ilde{G}^{\, au} = ilde{C}_{mg}$$

Ensemble gradient given by the pseudo inverse

$$\tilde{G}=\Delta d\Delta m^{\dagger}$$

Ensemble covariance

$$ilde{C}_m = rac{1}{N_e - 1} \Delta m \Delta m^T$$

Rewriting

$$\begin{split} \tilde{\mathcal{C}}_{m}\tilde{\mathcal{G}}^{T} &= \frac{1}{N_{e}-1}\Delta m\Delta m^{T}\left(\Delta m^{\dagger}\right)^{T}\Delta d^{T} \\ &\Rightarrow \tilde{\mathcal{C}}_{m}\tilde{\mathcal{G}}^{T} = \frac{1}{N_{e}-1}\Delta m\Delta d^{T} = \tilde{\mathcal{C}}_{mg} \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

$$ilde{G} ilde{C}_m ilde{G}^{ op}= ilde{C}_{gg}$$

▶ Inserting for \tilde{G} and \tilde{C}_m

$$\tilde{G}\tilde{C}_m\tilde{G}^{T}=\frac{1}{N_e-1}\Delta dV_pV_p^{T}\Delta d^{T}$$

$$ilde{G} ilde{C}_m ilde{G}^{ op}= ilde{C}_{gg}$$

▶ Inserting for \tilde{G} and \tilde{C}_m

$$\tilde{G}\tilde{C}_m\tilde{G}^{T}=\frac{1}{N_e-1}\Delta dV_pV_p^{T}\Delta d^{T}$$

$$\blacktriangleright \ N_{e} \leq N_{m} \Longrightarrow V_{p}V_{p}^{T} = I \Longrightarrow \tilde{G}\tilde{C}_{m}\tilde{G}^{T} = \frac{1}{N_{e}-1}\Delta d\Delta d^{T} = \tilde{C}_{gg}$$

$$\tilde{G}\tilde{C}_m\tilde{G}^{T}=\tilde{C}_{gg}$$

▶ Inserting for \tilde{G} and \tilde{C}_m

$$\tilde{G}\tilde{C}_m\tilde{G}^{T} = \frac{1}{N_e - 1}\Delta dV_p V_p^{T}\Delta d^{T}$$

$$\blacktriangleright \ N_e \le N_m \Longrightarrow V_p V_p^T = I \Longrightarrow \tilde{G} \tilde{C}_m \tilde{G}^T = \frac{1}{N_e - 1} \Delta d\Delta d^T = \tilde{C}_{gg}$$

$$\begin{pmatrix} N_{e} \leq N_{m} \land \tilde{C}_{m} = \frac{1}{N_{e}-1} \Delta m \Delta m^{T} \\ \text{Hi-EnKS} = \text{GN-EnRML} \end{pmatrix}$$

$$\tilde{G}\tilde{C}_m\tilde{G}^{T}=\tilde{C}_{gg}$$

► Inserting for \tilde{G} and \tilde{C}_m $\tilde{G}\tilde{C}_m\tilde{G}^T = \frac{1}{N_e - 1}\Delta dV_pV_p^T\Delta d^T$ ► $N_e \leq N_m \Longrightarrow V_pV_p^T = I \Longrightarrow \tilde{G}\tilde{C}_m\tilde{G}^T = \frac{1}{N_e - 1}\Delta d\Delta d^T = \tilde{C}_{gg}$ $N_e \leq N_m \land \tilde{C}_m = \frac{1}{N_e - 1}\Delta m\Delta m^T$ Hi-EnKS = GN-EnRML

Same result when comparing ES & sim. GN-EnRML

Comparing Hi-EnKS & GN-EnRML

▶ For N_e > N_m the difference between GN-EnRML and Hi-EnKS determined by

$$\tilde{C}_{gg} = \frac{1}{N_e - 1} \Delta d_t \Delta d_t \qquad \tilde{G} \tilde{C}_m \tilde{G}^T = \frac{1}{N_e - 1} \Delta d_p \Delta d_p^T$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- Δd_t : True predicted data pertubation
- Δd_p : Predicted linearized data pertubation $\Delta d_p = \tilde{G} \Delta m = \Delta d_t V_p V_p^T$

Comparing Hi-EnKS & GN-EnRML

▶ For N_e > N_m the difference between GN-EnRML and Hi-EnKS determined by

$$\tilde{C}_{gg} = \frac{1}{N_e - 1} \Delta d_t \Delta d_t \qquad \tilde{G} \tilde{C}_m \tilde{G}^T = \frac{1}{N_e - 1} \Delta d_p \Delta d_p^T$$

- Δd_t : True predicted data pertubation
- Δd_p : Predicted linearized data pertubation $\Delta d_p = \tilde{G} \Delta m = \Delta d_t V_p V_p^T$
- Difference depends on the non-linearity of the data:

$$\Delta d_t - \Delta d_p = \Delta e \left(I - V_p V_p^T \right)$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 $\blacktriangleright \Delta e = e_j - \overline{e}$

e_j: Truncation error

Goal: Understand the importance of seq. and sim. assimilation when combining data with different degrees of non-linearity

- ▶ Note: Analytical result exist for seq. vs sim. RML with linear data
- Strategy:
 - ► Define comparable variants of seq./sim. RML and EnKF/ES
 - Analyze differences between the methods
 - Extend linear RML result to new RML variants for combination of linear and non-linear data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Extend linear RML result for variants of EnKF/ES

 Utilizing seq./sim. GN-EnRML extend linear RML result for combination of linear and non-linear data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Choice of covariance update for seq. GN-EnRML

1.
$$C_m^a = C_m^f - C_m^f G^T \left[G C_m^f G^T + C_d \right]^{-1} G C_m^f$$

2.
$$\tilde{C}_m^a = \frac{1}{N_e - 1} \Delta m \Delta m^T$$

 Utilizing seq./sim. GN-EnRML extend linear RML result for combination of linear and non-linear data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Choice of covariance update for seq. GN-EnRML

1.
$$C_m^a = C_m^f - C_m^f G^T [GC_m^f G^T + C_d]^{-1} GC_m^f$$

2.
$$\tilde{C}_m^a = \frac{1}{N_e - 1} \Delta m \Delta m^T$$

We choose 1 for seq. GN-EnRML

▶ Compare sim. assimilation with seq. assimilation of two data groups

▶ Compare sim. assimilation with seq. assimilation of two data groups

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Case 1:

$$\left[\begin{array}{c} d_1 \\ d_2 \end{array}\right] = \left[\begin{array}{c} g\left(m_j\right) \\ Gm_j \end{array}\right]$$

After assimilation:

$$m_j^{seq} = m_j^{sim}$$

Compare sim. assimilation with seq. assimilation of two data groups

Case 1:

$$\left[\begin{array}{c} d_1 \\ d_2 \end{array}\right] = \left[\begin{array}{c} g\left(m_j\right) \\ Gm_j \end{array}\right]$$

After assimilation:

$$m_j^{seq} = m_j^{sim}$$

Case 2:

$$\left[\begin{array}{c}d_1\\d_2\end{array}\right] = \left[\begin{array}{c}Gm_j\\g\left(m_j\right)\end{array}\right]$$

After assimilation:

$$m_j^{seq}
eq m_j^{sim}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compare sim. assimilation with seq. assimilation of two data groups

Case 1:Case 2: $\begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} g(m_j) \\ Gm_j \end{bmatrix}$ $\begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} Gm_j \\ g(m_j) \end{bmatrix}$ After assimilation:After assimilation: $m_j^{seq} = m_j^{sim}$ $m_j^{seq} \neq m_j^{sim}$

► GN-EnRML: seq. = sim. for non-linear → linear
 ► GN-EnRML: seq. ≠ sim. for linear → non-linear

Goal: Understand the importance of seq. and sim. assimilation when combining data with different degrees of non-linearity

- ▶ Note: Analytical result exist for seq. vs sim. RML with linear data
- Strategy:
 - ► Define comparable variants of seq./sim. RML and EnKF/ES
 - Analyze differences between the methods
 - Extend linear RML result to new RML variants for combination of linear and non-linear data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Extend linear RML result for variants of EnKF/ES

► Remember:

Remember:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

► Seq. GN-EnRML updated covariance as: $C_m^a = C_m^f - C_m^f G^T [GC_m^f G^T + C_d]^{-1} GC_m^f$

Remember:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Seq. GN-EnRML updated covariance as: $C_m^a = C_m^f - C_m^f G^T [GC_m^f G^T + C_d]^{-1} GC_m^f$
- Need: $N_e \to \infty$ for $C_m^a = \tilde{C}_m$
 - GN-EnRML \neq Hi-EnKS

Remember:

$$egin{aligned} N_{e} \leq N_{m} \wedge \ ilde{C}_{m} &= rac{1}{N_{e}-1} \Delta m \Delta m^{\mathcal{T}} \ \end{aligned}$$
Hi-EnKS = GN-EnRML

Seq. GN-EnRML updated covariance as: $C_m^a = C_m^f - C_m^f G^T \left[G C_m^f G^T + C_d \right]^{-1} G C_m^f$

• Need:
$$N_e \to \infty$$
 for $C_m^a = \tilde{C}_m$

- GN-EnRML \neq Hi-EnKS
- Difference between methods depend on non-linearity
 - Perform numerical studies for Hi-EnKS with weakly non-linear data

Numerical studies

 \blacktriangleright Difference between Hi-EnKS and GN-EnRML varies with Δe

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

- Numerical study to investigate:
 - Optimal assimilation strategy
 - GN-EnRML result valid for Hi-EnKS

Numerical studies

- Difference between Hi-EnKS and GN-EnRML varies with Δe
- Numerical study to investigate:
 - Optimal assimilation strategy
 - GN-EnRML result valid for Hi-EnKS
- Numerical experiments
 - Univariate:
 - Simple forward model
 - One linear data group
 - One non-linear data group
 - Multivariate
 - 1D Reservoir
 - One weakly non-linear data group
 - One data group with stronger non-linearity

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Numerical studies

- Difference between Hi-EnKS and GN-EnRML varies with Δe
- Numerical study to investigate:
 - Optimal assimilation strategy
 - GN-EnRML result valid for Hi-EnKS
- Numerical experiments
 - Univariate:
 - Simple forward model
 - One linear data group
 - One non-linear data group
 - Multivariate
 - 1D Reservoir
 - One weakly non-linear data group
 - One data group with stronger non-linearity
- Assess quality of Hi-EnKS/ES by Kullback-Leibler Divergence (KLD) to McMC samples
 - Nearest Neighbor kernel density estimator

Univariate example

Simple forward model

$$d_i = m^{r_i}$$

▶ Assimilate $d_1 \rightarrow d_2$ and $d_2 \rightarrow d_1$ with Hi-EnKS, and assimilate simultaneously with ES

m _{ref}	3
Prior mean	8
Prior Var	1

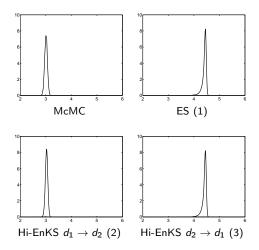
r_1	1
<i>r</i> ₂	2
$\sigma^2_{d_{1/2}}$	0.1

Ensemble size	$1 imes 10^5$
McMC iterations	$1 imes 10^5$
McMC acceptance rate	0.2267

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

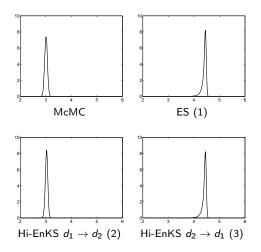
Table: Numerical details

Univariate example



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Univariate example



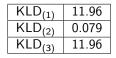


Table: Univariate results

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Multivariate example

- ▶ 1D reservoir consisting of 31 unknown parameters
- Two data groups
 - d₁: 6 measurements of log(perm) field. Measurements made at wells marked Hard obs

$$d_1 = \log(perm)^{1.2}$$

• d_2 : 6 pressure observations, made at a single well marked Pres obs

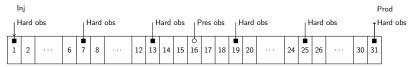


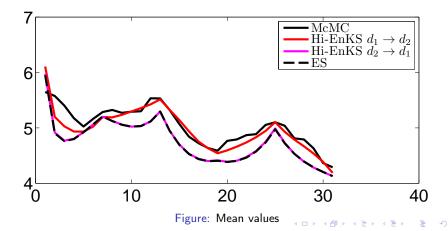
Figure: Grid blocks & well placement

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

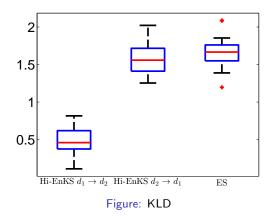
Multivariate example

Ensemble size	$5 imes 10^4$
McMC proposals	$5 imes 10^5$
McMC acceptance rate	0.238

Table: Numerical details



Multivariate example



$\overline{KLD}_{d_1 \to d_2}$	0.48
$\overline{KLD}_{d_2 \to d_1}$	1.58
KLD _{ES}	1.66

Table: Multivariate results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusions

Analysis shows:

- ▶ GN-EnRML: seq. = sim. for non-linear data before linear data
- ► For $N_e \leq N_m \land \tilde{C}_m = \frac{1}{N_e 1} \Delta m \Delta m^T$: GN-EnRML = Hi-EnKS

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• For $N_e > N_m$: (GN-EnRML - Hi-EnKS) $\propto \Delta e$

Conclusions

Analysis shows:

▶ GN-EnRML: seq. = sim. for non-linear data before linear data

► For
$$N_e \leq N_m \land \tilde{C}_m = \frac{1}{N_e - 1} \Delta m \Delta m^T$$
: GN-EnRML = Hi-EnKS

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

• For $N_e > N_m$: (GN-EnRML - Hi-EnKS) $\propto \Delta e$

Numerical experiments show:

- Hi-EnKS: seq. = sim. non-linear data before linear data
- Data with weakest non-linearity first:
 - Best univariate and multivariate mean
 - Best univariate and multivariate KLD

Thank you